DE 7294621 0001329 7 T-01-13

# **Passivated** Rectifier

TRANSIENT VOLTAGE PROTECTED 200-1000 Volts 2.5 Amps

**A14 SERIES** 1N5059 1N5060 1N5061 1N5062

**A14P** 

THE GENERAL ELECTRIC A14 IS A 2.5 AMPERE RATED, AXIAL-LEADED GENERAL PURPOSE RECTIFIER. DUAL HEATSINK CONSTRUCTION PRO-VIDES RIGID MECHANICAL SUPPORT FOR THE PELLET AND EXCELLENT THERMAL CHARACTERISTICS. PASSIVATION AND PROTECTION OF THE SILICON PELLETS PN JUNCTION ARE PROVIDED BY SOLID GLASS; NO ORGANIC MATERIALS ARE PRESENT WITHIN THE HERMETICALLY SEALED PACKAGE.

The A14 is "Transient-Voltage Protected." This device will dissipate up to 1000 watts in the reverse direction without damage. Voltage Transients generated by household or industrial power lines are dissipated.

absolute maximum ratings: (25°C unless otherwise specified)

| *Reverse Voltage (-65°C to +175°C, T <sub>J</sub> )<br>(-65°C to +165°C for 1N5062 and A14P)                                                                        | 1 N5059<br>(A148) | 1N5060<br>(A14D) | 1N5061<br>(A14M)    | 1N5062<br>(A14N) | A14P         |                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|---------------------|------------------|--------------|---------------------------------------|
| Working Peak, $V_{RWM}$ DC, $V_R$                                                                                                                                   | 200<br>200        | 400<br>400       | 600<br>600          | 800<br>800       | 1000<br>1000 | Volts<br>Volts                        |
| *Average Forward Current, I <sub>o</sub> *100°C Ambient (90°C for 1N5062 and A14P) 25°C Ambient (See Rating Curves)                                                 | <b>—</b>          |                  | — 1.0 —<br>— 2.5 —  |                  | <b>→</b>     | Amp<br>Amp                            |
| *Peak Surge Forward Current, I <sub>FSM</sub> Non-repetitive, .0083 sec., half sine wave, Full Load JEDEC Method No Load (25°C Case)                                | <b>4</b>          |                  | 50<br>65            |                  | <b>=</b>     | Amps<br>Amps                          |
| Peak Surge Forward Current, I <sub>FSM</sub><br>Non-repetitive, .001 sec., half sine wave,<br>Full Load<br>No Load (25°C Case)                                      | <b>4</b>          |                  | — 90 —<br>— 100 —   | ····             | <b></b>      | Amps<br>Amps                          |
| *Junction Operating and Storage Temperature Range, T <sub>J</sub> & T <sub>STG</sub> I <sup>2</sup> t, RMS (for fusing), .001 to .01 sec. Maximum Avalanche Voltage | <b>4</b>          | 65 to +175       |                     | → -65 to +       |              | °C<br>Amps <sup>2</sup> sec.<br>Volts |
| Peak Non-repetitive Reverse Power Rating, $P_{RM}$ 20 $\mu sec.$ , half sine wave, at Max. $T_J$ *100 $\mu sec.$ , JEDEC                                            | <del></del>       |                  | — 1000 —<br>— 450 — |                  | <b></b>      | Watts<br>Watts                        |

\*Mounting: Any position. Lead Temperature 290°C maximum to 1/8 inch from body for 5 seconds maximum during mounting.

| Maximum Forward Voltage Drop, $V_F$ , 1A, $T_J = 75^{\circ}C$          | <b>-</b>    |         | - 1.2   |             | <b></b>         |
|------------------------------------------------------------------------|-------------|---------|---------|-------------|-----------------|
| Maximum Reverse Current, $I_R$ , at Rated $V_{RRM}$ :<br>$T_T = 25$ °C | 4           |         | - 5.0   |             |                 |
| $T_{J} = 25 \text{ C}$<br>* $T_{J} = 165 \text{ C}$                    | _           |         |         | 200         | 200             |
| $*T_J = 175$ °C                                                        | 300         | 300     | 200     |             |                 |
| Typical Reverse Current, $I_R$ , at Rated $V_{RRM}$                    | •           |         | - 1.0 — |             |                 |
| Typical Reverse Current, I <sub>R</sub>                                |             |         |         |             |                 |
| $T_{\rm J} = 25^{\circ}{\rm C}$                                        | 0.2         | 0.2     | 0.3     | 0.5         | 0.5             |
| $T_J = 100$ °C                                                         | 20          | 20      | 20      | 30          | 30              |
| Typical Reverse Recovery Time, T <sub>RR</sub>                         | <del></del> |         | - 3     | <del></del> |                 |
| Maximum Reverse Recovery Time, T <sub>RR</sub>                         | 4           | ·····   | - 6 -   |             | <del>&gt;</del> |
| Recovery circuit per MIL-S-19500/286C.                                 | 290 /       | N 5059. | -1      |             |                 |
| *JEDEC Registered data.                                                | 200         |         | ,       |             |                 |

4 DE. 7294621 0001330 3

1N5059 1N5060 1N5061

1N5059 1N5060 1N5061 1N5062 A14P

# MAXIMUM ALLOWABLE DC OUTPUT CURRENT RATINGS

## SINGLE PHASE 600 VOLTS & BELOW





### RESISTIVE OR INDUCTIVE LOAD 800 AND 1000 VOLTS





TYPICAL TIE LUG MOUNTS

PERF BOARD



**TIE POINT OPERATION** 

| 1N5059 |   |
|--------|---|
| 1N5060 |   |
| 1N5061 |   |
| 1N5062 |   |
| Δ14Ρ   | _ |

## TYPICAL CHARACTERISTICS

74



**REVERSE CHARACTERISTICS AT SELECTED JUNCTION TEMPERATURES** 



**MAXIMUM NON-REPETITIVE MULTICYCLE FORWARD SURGE CURRENT** 



FORWARD CHARACTERISTICS



MAXIMUM NON-REPETITIVE AVALANCHE **SURGE POWER** 

1N5059-3 292

1N5059

## CAPACITIVE LOADS

**Current Derating (capacitive load)** 

Average forward current as specified under MAXIMUM RATINGS page 1 and derating curves for high temperature operation page 2, must be corrected for applications with capacitive loads. As the current conduction angle,  $\alpha'$ , is decreased, the peak current required to maintain the same average current increases, i.e., the peak-to-average current ratio increases from 3.14. Figure 9 gives the derating required based on this increase in peak to average current ratio for sine wave operation. For more complete information consult Application Note 200.30.

- METHOD: 1. Determine conduction angle  $\alpha'$  in degrees for particular circuit as designed.
  - 2. Enter Figure 9 for the particular conduction angle and read corresponding percent of forward current per cell.
  - 3. Multiply this value times average forward current for resistive load from figures on page 2 as given for the actual ambient or tiepoint temperature required.

| TYPICAL EXAMPLES (25°C Ambient Temperature) |                  |                  |                  |                  |         |
|---------------------------------------------|------------------|------------------|------------------|------------------|---------|
|                                             | Example<br>No. 1 | Example<br>No. 2 | Example<br>No. 3 | Example<br>No. 4 | Units   |
| Input Voltage                               | 100              | 100              | 300              | 300              | Volts   |
| D.C. (Average) Output Voltage               | 34               | 75               | 180              | 270              | Volts   |
| Surge Resistor                              | 1                | 1                | 3.5              | 3.5              | Ohms    |
| Load Current                                | 0.5              | 0.5              | 0.5              | 0.5              | Amps.   |
| Input Filter Capacitance                    | 30               | 100              | 30               | 100              | μF.     |
| Conduction Angle                            | 170              | 70               | 90               | 50               | Degrees |
| Rated Average Current<br>(Resistive Load)   | 1                | 1                | 1                | 1                | Amp.    |
| Rated Average Current<br>(Capacitive Load)  | 0.98             | 0.73             | 0.80             | 0.65             | Amp.    |



a = CONDUCTION ANGLE (180°) a' = SHORTENED CONDUCTION ANGLE

#### OSCILLOSCOPE PRESENTATION



9. DERATING FOR SHORTENED **CONDUCTION ANGLE** 

### INTERNAL CONSTRUCTION

- 1. Dual heatsink design for maximum heat dissipation under both surge and continuous duty. No fragile "whiskers" or S leads with their potential trouble spots.
- 2. Glass Package. No internal cavity to act as potential source of moisture or contamination on junction. Temperature coefficient of the glass is matched with the internal parts.
- 3. Diffused silicon junction passivated surface.

Marking band to appear on cathode end.



OUTLINE DRAWING

ALL DIMENTIONS ARE IN INCHES AND (METRIC) \*WELD AND SOLDER FLASH NOT CONTROLLED IN THIS AREA

#### TYPICAL APPLICATIONS

- FREE-WHEELING RECTIFIERS
- TIME DELAY CIRCUITS
- POWER LOGIC CIRCUITS
- ARC SUPPRESSION
- BATTERY CHARGERS
- TV DAMPER DIODES

- TV AND RADIO POWER SUPPLIES
- COMMUNICATION EQUIPMENT
- S.C.R. TRIGGER CIRCUITS
- SMALL PORTABLE APPLIANCES
- GENERAL PURPOSE POWER SUPPLIES
- LOW LEVEL LIMITERS

293 /N5059-4