
SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

This document is the copyright of Money Controls Ltd and may not be reproduced in part or in total by any means,
electronic or otherwise, without the written permission of Money Controls Ltd. Money Controls Ltd does not accept
liability for any errors or omissions contained within this document. Money Controls Ltd shall not incur any
penalties arising out of the adherence to, interpretation of, or reliance on, this standard. Money Controls Ltd will
provide full support for this product when used as described within this document. Use in applications not covered
or outside the scope of this document may not be supported. Money Controls Ltd. reserves the right to amend,
improve or change the product referred to within this document or the document itself at any time.

Money Controls 2005. All rights reserved.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 2 of 53

Contents:

1. Diary of Changes ... 4
2. Introduction.. 5
3. Safety Note... 5
4. Mechanical Description... 5
5. Mechanical Features ... 6

5.1 Hopper Dimensions ... 6
5.2 Hopper Weight... 6
5.3 Coin Size Range.. 6
5.4 Coin Capacity .. 6

Overall Dimensions ... 7
7. Installation and Removal .. 8

7.1 Securing the hopper base.. 8
7.2 Using the 4mm Holes .. 8
7.3 Dismantling the hopper.. 8
7.4 Hopper Assembly .. 8

8. Why Serial ? ... 9
9. Product Features ... 10
10. ccTalk Design Parameters ... 12

10.1 Serial Connector Type ... 13
10.11 Serial Connector Pinout... 13

10.2 Address Selection.. 14
11. Encryption Mechanism ... 15

11.1 PIN Number Mechanism.. 17
12. Power Fail Recovery.. 19

12.1 Power Fail in Detail.. 20
13. What happens…? .. 22

13.1 What happens after Power Up ?.. 22
13.2 What happens after Software Reset ? ... 23

14. Simple Coin Payout ... 24
15. Full Initialisation & Payout Sequence.. 25
16. Command List.. 28

16.1 Commands in Detail .. 29
17. Power Distribution on a Multi-Drop Bus.. 43
18. Electrical Noise - Physical Measures... 44
19. Electrical Noise - Software Measures .. 44
20. Electrical Specification ... 45

20.1 Coin Payout: .. 45
20.2 Environmental:... 45

21. Maintenance Schedule .. 46
22. Fault Finding and Repair... 46
23. Appendix A... 47

23.1 Conversion Equations & Default Values .. 47
23.2 Limits ... 47
23.3 Software Reset .. 47

24. Appendix B... 48
24.1 Timing Parameters .. 48
24.2 Opto Security Timing ... 48
24.3 Hopper Initialisation ... 48

25. Appendix C... 49
25.1 ccTalk Interface Circuit ... 49

26. Appendix D... 50
26.1 NV Memory Map Description... 50

27. Appendix E... 52

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 3 of 53

Figures:

Figure 1: Hopper Dimensions .. 7
Figure 2: SUH Connector .. 13
Figure 3: ccTalk Interface Circuit: .. 49

Tables:

Table 1: Coin Capacities ... 6
Table 2: Address Selection.. 14
Table 3: Command List. .. 28
Table 4: Flag Action Table:.. 41
Table 5: Electrical Specification... 45
Table 6: Coin Payout Rate .. 45
Table 7: Environmental Ranges .. 45
Table 8: Maintenance Schedule .. 46
Table 9: Fault Finding and repair... 46
Table 10: Conversion Equations & Default Values:. .. 47
Table 11: Timing Parameters:. .. 48
Table 12: NV Memory Map Description:. ... 50

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 4 of 53

1. Diary of Changes

Issue 1.0 First Issue ... 2nd October 2002
¾ Information based on SUH Product Manual V1.1

Issue 1.1..8th November 2002

¾ TOC Section 5 now visible
¾ Ammended headers.

Issue 1.2... 18th August 2003

¾ Applied TMWP V3.2
¾ Added picture of Cinch connector - Figure 2.
¾ Changed ccTalk® to ccTalk throughout the document.
¾ Added Un-Encryption note in sections 8 and 11.

Issue 1.3...30th June 2004

¾ Changed footer

Issue 1.4... 2nd Nov 2004
¾ Added section 3 Safety Note.

Issue 1.5...13th Oct 2005

¾ Corrected the overall dimensions in Figure 1.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 5 of 53

2. Introduction
The Universal Hopper with Serial Interface is a serially controlled version of the popular
Universal Hopper manufactured by Money Controls. The serial interface is ccTalk, firmly
established as a leading, low-speed, device control protocol in the money-transaction industry.
A key feature of ccTalk is its optimal balance between simplicity and security.

3. Safety Note

To meet the requirements for EN 60950 the equipment must be installed according to the
following requirements:-

¾ The equipment must be protected by a 3A fuse.
¾ The equipment must be supplied from a SELV limited power source.
¾ The equipment must be installed in an enclosure but positioned so that it is

external to any fire enclosure area within the main enclosure.

4. Mechanical Description
Each hopper contains a coin track which consists of individual plates clipped together. The
track is driven via gears from a motor. The track moves in an anti-clockwise direction (viewed
from the end plate side). As the track moves, it picks coins up from the bottom of the cashbox
and transports them to the coin exit window. The tracks are designed so that when the coin is
adjacent to the coin exit, the coin rolls off the track, through the exit window and passed the
optic sensors.

An optical coin detector is created by infrared transmitters and photo detectors situated on the
PCB which is sited in the exit window. The infrared light beam is routed across the exit slot via a
light guide. When a coin passes through the exit the light beam will be broken and a coin output
signal will be generated.

Although the Universal Hopper is called ‘Universal’ there are a number of track options to
overcome specific coins and coin ranges.

These are:-

Large coin = (30.1 - 31.0 mm dia)
Standard coin track = (21.0 - 30.0 mm dia)
Small coin track = (17.5 - 20.9 mm dia)
Euro track = (€2, €1, 50c, 20c, 10c, 5c)
Euro small coin = (16.25 - 20.9 mm dia) - previously called the small thin coin.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 6 of 53

5. Mechanical Features

5.1 Hopper Dimensions
The hoppers overall dimensions, mounting arrangement, coin entry and exit points are
detailed in Figure 1.

5.2 Hopper Weight
Empty = 1.87 Kg

5.3 Coin Size Range
Hoppers can be configured to pay out coins in the diameter range 16.0mm - 31.0mm, and
within the thickness range 1.25mm - 3.50mm.

5.4 Coin Capacity
The coin capacity of the hopper is between 700 and 3500 depending on their physical size.

Table 1: Coin Capacities

Coin
Diameter

(mm)
Thickness

(mm)
SUH

Capacity

£2 28.40 2.50 760

£1 22.50 3.10 940

50p new 27.30 1.80 1130

20p 21.40 1.80 1840

10p 24.50 1.83 1400

5p 18.00 1.73 2720

2p 25.90 1.80 1120

1p 20.25 1.43 2350

 Note: these capacities are subject to a +/- 10% error.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
Page 7 of 53

6. Overall Dimensions

Figure 1: Hopper Dimensions

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 8 of 53

7. Installation and Removal

Warning: Ensure that the power has been disconnected from the hopper before removal.

7.1 Securing the hopper base
¾ A set of fixing holes have been provided in the baseplate to allow the hopper to be

secured in a host machine.

7.2 Using the 4mm Holes
¾ Drill 6 holes on the centres
¾ Set the baseplate over holes and fix into position using M3 screws

7.3 Dismantling the hopper
¾ Please refer to the Universal Hopper Service Manual TSP053 for full details.

7.4 Hopper Assembly
¾ Please refer to the Universal Hopper Service Manual TSP053 for full details.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 9 of 53

8. Why Serial ?
Coin hoppers traditionally have a simple parallel interface. Common methods for paying out
coins include ‘logic motor control’ whereby a low voltage control signal can be used to turn the
motor on and off, and ‘pulse counting’ whereby a stream of pulses is used to dispense the coins
(one coin per pulse). In the ‘logic motor control’ method it is up to the host software to monitor
and count coins travelling past the payout optos.

Serial gives immediate benefits for security as an encrypted (see note below) dispense
command is needed to pay out any coins from the hopper, and the hopper itself counts the
coins coming out. The opportunities for an external attack are much reduced. It also reduces
loading on the host controller - it can perform other tasks while the hopper is paying out coins.

Another benefit of ‘multi-drop’ serial is the ability to connect several coin hoppers to the same
wiring harness or ‘bus’. This greatly simplifies the cabling within a machine as multiple hoppers
can be daisy-chained together rather than having to branch out from a central star point. The
number of control signals is usually much less with serial than with parallel. The only control
signal in the ccTalk protocol is a single bi-directional ‘data’ line. It is also possible with serial to
connect in other money transaction peripherals such as coin acceptors, bill validators and card
readers.

The inherent ‘expandability’ of serial allows for a much better level of diagnostics and error
reporting than is available on parallel, if it is available at all. Rather than a general alarm
condition, the difference between a coin jam and a deliberate attempt to fraud the hopper can
be reported externally.

 Please Note:-

A version of Serial Universal Hopper is available WITHOUT Encryption.

Please refer to cctalk.org for further information.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 10 of 53

9. Product Features
SUH represents to date the most sophisticated serial coin hopper in the world. Responding to
comments from the leading UK machine manufacturers, Money Controls has designed in an
unprecedented level of security.

The following features are available on SUH…

¾ Coin dispensing security. The serial command to pay out a coin uses a 64-bit encryption

key which changes randomly after each operation. This makes serial ‘cloning’ whereby a
handheld terminal listens to the serial bus and plays back dispense commands a fruitless
exercise. A typical dispense cycle will see a total of 192 bits of random information
transferred across the bus.

¾ Payout modes. The hopper defaults to multi-coin payout mode which pays up to 255

coins in a single dispense command. For extra security the hopper can be placed in
single coin payout mode which only allows one coin to be paid out at a time.

¾ PIN number security. There is an option to protect the hopper with a PIN number so that

if it is stolen from a machine and plugged into another one it cannot be made to work. It is
the equivalent of a mechanical lock with the machine manufacturer generating and
keeping the key.

¾ Opto security. During idling (no coins being paid out), the exit optos are randomly

pulsed. If a blockage is seen while driving the opto or a short-circuit seen while not driving
the opto then an alarm condition is generated. During pay out, if a short-circuit is seen
while not driving the opto then an alarm is generated. Blockages are usually caused by
inserting objects into the hopper exit and short-circuits by shining torches or lasers into
the optics.

¾ Anti-jam operation. If the hopper experiences a coin jam during a payout sequence it will

automatically reverse in order to clear the jam.

¾ Software fuse. If an absolute maximum current threshold is exceeded (factory pre-set)
then the hopper aborts payout with an error code.

¾ Polyswitch protection. The motor driver terminals are protected with a polyswitch for

additional overload protection.

¾ Power fail protection. A non-volatile memory keeps track of coins paid out. If power is lost
during a payout sequence then the residual number of coins to pay can be read back
after the machine re-initialises.

¾ Unique serial number. Each hopper is manufactured with a unique 24-bit serial number

which cannot be modified by external means.

¾ Coin counting. Two counters record the number of coins paid out of the hopper. One is
reset-able by the user, the other is a life counter. Both are implemented in NV Memory.

¾ Data integrity. All coin counter values in NV Memory are stored with a 8-bit checksum to

ensure data integrity.

¾ Level plate support. There is an option to fit high or low level plates and the status of
these can be read by the host machine on serial.

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 11 of 53

¾ Remote configuration. Motor parameters such as reversing current and payout timeout
can be changed with serial commands. No changes to electronic components are
required.

¾ Multi-drop operation. A number of serial hoppers can be connected to the same serial

bus. Device addresses default to those determined by the wiring harness but they can be
changed in software to any 8-bit value.

¾ User memory. 10 bytes of non-volatile memory are available for unrestricted use by the

host machine. There are various security and auditing tasks which could be
accomplished with this feature.

¾ Extensive command set. Host software can implement a small or large fraction of the full

command set available depending on the application. Commands are available for
inhibiting the hopper, reading the state of the exit optos, checking the software revision
etc.

¾ Diagnostic and error reporting. Full access to diagnostic and error codes are made

available over serial.

¾ Code protection. The software is protected with an internal, independent, watchdog
circuit. A ‘crash’ in the software will result in a clean reset of code.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 12 of 53

10. ccTalk Design Parameters
Refer to issue 4.2 of the ‘ccTalk Serial Communication Protocol / Generic Specification’ for an
explanation of the protocol and its implementation on any platform.

This product is configured as…
ccTalk b96.p0.v24.a5.d0.c9.m0.x8.i1.r3

In other words…
9600 baud / open-collector interface / +24V supply / +5V data /
supply sink / connector type 9 / slave device / 8-bit checksum /
implementation level 1 / spec. issue 3

The hopper can only operate at 9600 baud.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 13 of 53

10.1 Serial Connector Type
Peripheral connector :
Cinch R76-77848 12-way male

Figure 2: SUH Connector

10.11 SERIAL CONNECTOR PINOUT

Pin Function

1 0V

2 N.C.

3 N.C.

4 Address Select 1 - LSB

5 /DATA (ccTalk)

6 N.C.

7 N.C.

8 Address Select 2

9 +Vs

10 N.C.

11 N.C.

12 Address Select 3 - MSB

Operation can be achieved with just 3 wires…

¾ +24V to pin 9
¾ GND to pin 1
¾ Bi-directional serial data line to pin 5

View of Connector from Front

1

5

4

9

12
8

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 14 of 53

10.2 Address Selection
The default ccTalk bus address for a ‘Payout’ device is 3. This is the address of the Serial
Universal Hopper if no connections are made to the address select pins (pins 1 to 3) on the
connector.

For applications requiring more than one hopper on the serial bus, one or more of the
address select lines may be connected to +Vs. A total of 8 unique bus addresses may be
generated in this way, in the range 3 to 10 inclusive.

Table 2: Address Selection.

X = Connect to +Vs (Pins 4, 5)

Address select 3 Address select 2 Address select 1

Serial

Address

 3

 X 4

 X 5

 X X 6

X 7

X X 8

X X 9

X X X 10

A number of mating connectors on a multi-drop bus cable may each be wired uniquely to
allow operation of multiple hoppers. Since address selection is done externally, any Serial
Universal Hopper may be plugged into any position on the bus and the host machine will
know which one is paying out a particular coin.

Address determination from the connector is only done at power-up or reset. Changing the
address select lines afterwards has no effect.

Note : Addresses may be changed in software to values other than those in the above
table. Refer to the ‘Address change’ and ‘Address random’ serial commands. These
values are lost at power-down or reset.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 15 of 53

11. Encryption Mechanism
A 64-bit encryption mechanism is used to ensure that an illegal attempt to dispense coins from
SUH is a hugely difficult task. The key to this mechanism is a secret algorithm, not published in
this document, which may be obtained from Money Controls after suitable approval procedures
have been gone through.

To show the procedure for dispensing a coin an example is shown here with a ‘trivial’ encryption
mechanism but the overall procedure is the same. Byte values between brackets are shown in
hex.

First of all we pump the random number generator of the hopper by sending 8 bytes of random
data to it…

Command = Pump RNG

Transmitted data : [34] [A2] [D7] [0F] [35] [17] [55] [94]
Received data : ACK

This is not an essential step but is useful to broaden the spectrum of cipher keys that are
transmitted along the serial bus and which may be ‘recorded’ by a hacker. As the host machine
is likely to be an AWP machine with a sophisticated random number generator, way beyond the
capability of the hopper microcontroller, we may as well make use of it. Note that the pump
value does not pre-set or ‘seed’ the RNG as that would defeat the security mechanism, but only
scrambles it further. The exact details of the scrambling algorithm will not be documented.

Then we request a key cipher key…

Command = Request cipher key

Transmitted data : <none>
Received data : [E5] [88] [13] [07] [46] [FE] [29] [05]

A new cipher key must always be requested prior to dispensing coins. There is no point using
an old copy as it changes after every dispense command. The ‘Request cipher key’ command
itself can be repeated in the event of a communication error and the cipher key will be re-
transmitted rather than regenerated.

Now we combine the cipher key with the number of coins to pay out (in this example 20 coins
or the value 14 hex) by tagging it onto the end of the data block…

Non-encrypted data [E5] [88] [13] [07] [46] [FE] [29] [05] [14]

In this case we will assume that the CMF (Cryptographic Mapping Function) is simply inverting
all the bytes (new data = FF - old data).

Performing this calculation on each of the bytes we obtain…

Encrypted data [1A] [77] [EC] [F8] [B9] [01] [D6] [FA] [14]

Note that the number of coins to pay out is unencrypted but its value is used in the real CMF.

Now we send that data to the hopper to pay out a coin…

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 16 of 53

Command = Dispense hopper coins

Transmitted data : [1A] [77] [EC] [F8] [B9] [01] [D6] [FA] [14]
Received data : [5] - example event counter

The next time we pay out a coin the cipher key will have changed, so unless the algorithm is
known, simple command ‘cloning’ will not work.

In practice, the CMF will be far more complex than this example and will require considerable
computing power and a long observation period to ‘crack’. Firing random data at the hopper will
also prove fruitless as there are astronomical odds against a successful code match.

Money Controls is realistic enough to appreciate that eventually the CMF may fall into the wrong
hands whether though huge computing resource or through leaked documentation. We have
embedded into our system an undocumented mechanism for changing the CMF in response to
future industry needs without any change to hardware.

An obvious hack would be to intercept and change the number of coins dispensed by the
‘Dispense hopper coins’ command to a greater value. This has been taken care of in the
security algorithm and will not work.

 Please Note:-

A version of Serial Universal Hopper is available WITHOUT Encryption.

Please refer to cctalk.org for further information.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 17 of 53

11.1 PIN Number Mechanism
A PIN number is provided on SUH as an optional security feature. By default, units are
shipped without the PIN number mechanism enabled. If this feature is not required or its use
is too restrictive then it can simply be ignored.

By programming a PIN number into the device, if the hopper device is subsequently powered
down or removed to another location then unless the PIN number is known, no coins can be
dispensed. This is another layer of defence against the determined hacker who wishes to
experiment with the encryption mechanism. However it does require the host machine
keeping track of the PIN numbers of any hoppers used in that cabinet.

Various possibilities include…

1. Don’t use a PIN number

Nice and easy that one.

2. Fix the PIN number to the same value always

This can be done but is not very secure. Once the PIN number is known then there is
effectively no PIN number protection on any of the hoppers. It is simple to manage though
and the ‘master’ PIN number is unlikely to be forgotten.

3. Scramble the PIN number and store in the user memory

This is quite a clever idea because it means you can randomise the PIN number on each
hopper and as long as you know how you scrambled it, it can be recovered, unscrambled
and sent to the hopper during the initialisation routine. Security relies on keeping this
scrambling algorithm secret.

4. Log the PIN number versus serial number

As each hopper has a unique serial number then this gives a convenient method of storing
the serial number against a random PIN number in a central database which all the
machines have access too on a network. This is the most secure method because unless
the PIN number transaction is captured on the bus at just the right moment in time, and for
that particular hopper, the only way to obtain the PIN would be by exhaustive searching.
With 4.3 billion combinations at 245ms per guess would take on average 16.7 years.

If you are unfortunate enough to have a hopper for which you have forgotten the PIN number
then contact Money Controls for details of any possible recovery mechanism that we may
have in place at the time.

Continued…..

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 18 of 53

Example

This is how to set the PIN number on a new hopper to 1-2-3-4 which does not already have
one…

Command = Enter new PIN number

Transmitted data : [1] [2] [3] [4]
Received data : ACK

Subsequent use of this command will still return an ACK but will not actually change the PIN
number to any other value. This is a ‘use once’ command.

As soon as a PIN number is programmed, the ‘Dispense hopper coins’ command will fail
until this PIN number is re-entered with the command below.

Likewise, after powering up SUH with the PIN number mechanism enabled, it must be
entered prior to paying out coins.

Command = Enter PIN number

Transmitted data : [1] [2] [3] [4]
Received data : ACK

Note that an ACK is always returned, even if the PIN number is incorrect. This increases
security.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 19 of 53

12. Power Fail Recovery
SUH contains a non-volatile memory (EEPROM) for the storage of coin counters. Therefore
if power is removed in the middle of a payout sequence then the situation can be recovered
and the residual coins paid out after power is restored. This behaviour is under control of the
host software - the hopper does not automatically dispense coins when power is re-applied.

The following counters are saved…

¾ [Last payout : coins paid] x 1 byte
¾ [Last payout : coins unpaid] x 1 byte
¾ [Hopper dispense count] x 3 bytes
¾ [Hopper life dispense count] x 3 bytes

along with their corresponding checksums.

The [Last payout : coins paid] and [Last payout : coins unpaid] bytes can be read with the
‘Request hopper status’ command.

The [Hopper dispense count] can be read with the ‘Request hopper dispense count’
command.

The [Hopper life dispense count] can be read by looking at block 3 of the NV Memory using
the ‘Read data block’ command. Refer to Appendix D for a memory map description.

After power-up initialisation, the host machine can read the [Last payout : coins unpaid]
byte to determine if there are any remaining coins to be paid out after the last session. The
decision to pay out any remaining coins is made by the host machine, not the hopper.

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 20 of 53

12.1 Power Fail in Detail
The sequence of saving the coin counters to NV Memory is triggered by the following
conditions…

¾ Sudden loss of power with the motor running
¾ Receipt of an ‘Emergency stop’ command

If power is suddenly lost with the motor running then the hopper will stop the motor
immediately and update the NV Memory while it has power to do so. SUH does not have a
‘battery back-up’ but uses a capacitor reservoir.

If power is lost after a payout sequence has completed (hopper in idle) then the
[Last payout : coins unpaid] counter is cleared, regardless of the value it was holding. This
is because it is assumed the host machine has dealt with the last payout sequence and
taken appropriate action. It is not desirable to flag unpaid coins during the next power-up
initialisation.

If the host machine has early notification of a power fail it can send an ‘Emergency stop’
command to the hopper. This command stops the motor dead and returns the number of
unpaid coins back to the host. This value should be stored by the host machine prior to
power being lost.

The use of the hardware reset line (pin 10 of the connector) is not to be used for aborting
payout as this does not allow the coin counters to be saved. The coin counters will be
incorrect if the hardware reset pin is used during a payout sequence.

Examples…

a) Power lost during payout sequence

Counter Initial value
Pay 3 from 10

then lose power

Last payout : coins paid 0 3

Last payout : coins unpaid 0 Î7Í

Hopper dispense count 0 3

Hopper life dispense count N N + 3

Coins remaining = 7

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 21 of 53

b) ‘Emergency stop’ command issued during payout sequence

Counter
Initial
value

Pay 3 from 10 then
‘Emergency stop’

Cycle power
off then on

‘Emergency stop’ return value 0 Î7Í 0

Last payout : coins paid 0 3 3

Last payout : coins unpaid 0 7 ZERO

Hopper dispense count 0 3 3

Hopper life dispense count N N + 3 N + 3

Coins remaining = 7

c) ‘Emergency stop’ command issued during payout sequence AND a coin is seen
 after the hopper replies with unpaid coins.

Counter
Initial
value

Pay 3 from 10 then
‘Emergency stop’

+ late coin exit
Cycle power
off then on

‘Emergency stop’ return value 0
7

Î6Í on retry
0

Last payout : coins paid 0 4 4

Last payout : coins unpaid 0 Î6Í ZERO

Hopper dispense count 0 4 4

Hopper life dispense count N N + 3 N + 4

Coins remaining = 6

In this more complicated example, the hopper dispense count and the hopper life dispense
count end up with the correct values even though a coin was seen on the exit optos after the
motor stopped. For the host machine to find the correct value of unpaid coins it would need
to re-send the ‘Emergency stop’ command or use the ‘Request hopper status’ command
before power was lost - otherwise it would think there were 7 unpaid coins rather than 6.

Therefore if you need to know the number of remaining coins during a power fail and wish to
use the ‘Emergency stop’ command, please ensure that you have enough time to send this
command and a ‘Request hopper status’ before power is lost. This gives the best possible
accuracy. The host machine needs at least 100ms of notice before the power supply dips
below Vtrip (see Appendix B).

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 22 of 53

13. What happens…?

13.1 What happens after Power Up ?
The following is a guide to what happens when power is lost and re-applied.

Device Address
Defaults to the connector address

PIN Number
Retained but needs to be re-entered

Motor Variables
[current limit] = default value
[motor stop delay] = default value
[payout timeout] = default value
[maximum current measured] = ZERO

See Appendix A for default values.

Flags
Refer to the Flag Action Table within the ‘Test hopper’ command description.

Note that the ‘Power-up’ flag is set to indicate the power supply really was lost and the
hopper defaults to multi-coin payout mode. The hopper also starts inhibited and needs to be
enabled prior to coin dispensing.

Counter checksum flags are updated.

Counters
Hopper dispense count = last value
Hopper life dispense count = last value

Request hopper status
[event counter] = ZERO
[payout coins remaining] = ZERO
[last payout : coins paid] = last value
[last payout : coins unpaid] = ZERO or last value if power lost during payout

Request comms status variables
[rx timeouts] = ZERO
[rx bytes ignored] = ZERO
[rx bad checksums] = ZERO

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 23 of 53

13.2 What happens after Software Reset ?

The following is a guide to what happens after a software reset. A software reset means
sending the ‘Reset device’ command to the hopper.

Device Address
Defaults to the connector address

PIN Number
Retained but needs to be re-entered

Motor Variables
[current limit] = default value
[motor stop delay] = default value
[payout timeout] = default value
[maximum current measured] = ZERO

See Appendix A for default values.

Flags
Refer to the Flag Action Table within the ‘Test hopper’ command description.

Note that the ‘Power-up’ flag is cleared. The hopper also starts inhibited and needs to be
enabled prior to coin dispensing.

Counter checksum flags are updated.

Counters
Hopper dispense count = last value
Hopper life dispense count = last value

Request hopper status
[event counter] = ZERO
[payout coins remaining] = ZERO
[last payout : coins paid] = last value
[last payout : coins unpaid] = last value

Request comms status variables
[rx timeouts] = ZERO
[rx bytes ignored] = ZERO
[rx bad checksums] = ZERO

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 24 of 53

14. Simple Coin Payout
The following shows the minimum command set needed to pay out some coins after receiving a
‘factory-fresh’ hopper. This will be helpful when writing new software drivers or for testing.

We will assume that the hopper is on address 3 and has just powered-up.

Send the following commands…

¾ Enable hopper
¾ Request cipher key
¾ Dispense hopper coins
¾ Request hopper status

In detail…
Message packets are shown in full (not just the data part). The host address is assumed to be
1 and [byte values] are in decimal.

Enable hopper

TX: [3] [1] [1] [164] [165] [178]
RX: [1] [0] [3] [0] [252] = ACK

Request cipher key

TX: [3] [0] [1] [160] [92]
RX: [1] [8] [3] [0] [key 1] [key 2] [key 3] [key 4] [key 5]

[key 6] [key 7] [key 8] [checksum]

The data bytes returned by this command are used in the encryption algorithm. For security
reasons details of the encryption algorithm are not given in this document.

Dispense hopper coins

TX: [3] [1] [1] [167] [sec 1] [sec 2] [sec 3] [sec 4] [sec 5]

[sec 6] [sec 7] [sec 8] [N coins] [checksum]
RX: [1] [1] [3] [0] [event counter] [checksum]

Between 1 and 255 coins can be dispensed with this command.

Request hopper status

TX: [3] [0] [1] [166] [86]
RX: [1] [4] [3] [0] [event counter] [payout coins remaining]
 [last payout : coins paid] [last payout : coins unpaid]

[checksum]

This command should be repeated until [payout coins remaining] = 0. Another cipher key can
then be requested and more coins dispensed.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 25 of 53

15. Full Initialisation & Payout Sequence
This is an example of a full initialisation and payout sequence on SUH…

Notation : ccTalk command’s are shown highlighted.

Optional… Address Resolution
If { network indeterminate } then
 Address poll Ö resolve addresses with BROADCAST address

 While { Address clash on any address } then
 Address random Ö scramble addresses with BROADCAST address
 Address poll Ö resolve addresses with BROADCAST address

 Request equipment category id Ö identify each device on bus
 Address change Ö assign new addresses if required

In other words, if we do not know where the serial hoppers are on the bus then we need to
locate them. If any of the device addresses clash then we need to scramble them and look
again. However, since the wiring harness for the hopper should initialise the device addresses
in a non-ambiguous manner, this address resolution software can be avoided.

Inititialisation
Simple poll Ö returns ACK to confirm device is attached, powered-up and 9600 baud comms is
working fine
Request equipment category id Ö returns ‘Payout’. Otherwise you will probably be trying to
dispense a coin from an acceptor !
Request variable set Ö connector address (physical position in machine)
Request serial number Ö store for reference

Optional… Product Data
Request manufacturer id Ö e.g. ‘Money Controls’
Request product code Ö e.g. ‘SUH’
Request software revision Ö e.g. ‘SUH1-Vx.y’
Request comms revision Ö ccTalk comms level
Request hopper coin Ö coin name if stored
Request build code Ö level sensor details

PIN Number Unlocking
Test hopper Ö check to see if PIN number mechanism is enabled
If { PIN enabled } then
 Enter PIN number
else
 Enter new PIN number Ö randomise and log against serial number for
 future reference
 Optional… Write data block Ö log host id in user data memory

The PIN number mechanism should only be enabled if the host machine has some way of
remembering it ! The easiest method is to make all the PIN numbers the same but that is not
very secure. It is much better to randomise them but in that case there will be problems if
hoppers are swapped between machines. You may wish to implement a central database of
PIN numbers versus serial numbers or perhaps make use of the user data section of the hopper
memory to store an encrypted PIN number.

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 26 of 53

Product Configuration
Modify variable set Ö set current limit
 set motor stop delay
 set payout timeout
 set single coin payout mode

Default values can be used if so desired in which case this command can be skipped. Single
coin payout mode is more secure though because once in this mode an external bus attack can
at best only pay out a single coin at a time rather than emptying the contents of the hopper. This
assumes all the other security mechanisms have been defeated. However, single coin payout
mode is much slower.

Remove Payout Inhibit
Enable hopper Ö prepare for payout by allowing the dispense command

Check for Residual Payout from a Power Fail
Test hopper Ö check for NV Memory write fail or checksum error
If { counter error } then

Write data block Ö if good host copy exists then correct counter
else

Request hopper status Ö check to see if there are residual coins after last
payout. If so then take the decision to pay out the balance.

Optional… Request hopper dispense count Ö check with last known host
copy to see if an illegal payout has been made

Errors in the hopper memory should not occur under normal operating conditions. If one of the
counters become corrupted however it would be possible to restore their contents if the host
machine has a backup copy.

Dispense Coin
Test hopper Ö check error flags are clear
If { error flags } then

< take appropriate action on possible fraud attempt >
Reset device Ö clear error flags
Enter PIN number Ö if enabled
Modify variable set Ö set current limit, stop delay, timeout, single coin mode
Enable hopper Ö re-enable hopper after reset

Pump RNG Ö send some random numbers to the hopper
Request cipher key Ö ready for encryption algorithm
Dispense hopper coins Ö pay out one or more coins

If { Dispense NAK } then
 Something went wrong - find out why ?

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 27 of 53

Dispense Verification
Request hopper status Ö check event counter
If { event counter not incremented } then
 Retry Dispense hopper coins

While { payout coins remaining > 0 }
 Request hopper status

Test hopper Ö check error flags are clear
If { error flags set } then
 Resolve from the following error conditions…
 <Coin jam> if max. current exceeded
 <Hopper empty> if payout timeout
 <Opto fraud attempt> if any opto error flag

Optional… Level Auditing
Request hopper dispense count Ö store host copy for subsequent verification
Request payout high / low status Ö is the hopper nearly empty ?

Early Notification of Power Fail
Emergency stop
Request hopper status Ö store unpaid coins for next power-up initialisation
Wait for power to disappear

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 28 of 53

16. Command List
34 commands are supported…

Table 3: Command List.

Header 254 Simple poll
Header 253 Address poll
Header 252 Address clash
Header 251 Address change
Header 250 Address random
Header 247 Request variable set
Header 246 Request manufacturer id
Header 245 Request equipment category id
Header 244 Request product code
Header 242 Request serial number
Header 241 Request software revision
Header 236 Read opto states
Header 219 Enter new PIN number
Header 218 Enter PIN number
Header 217 Request payout high / low status
Header 216 Request data storage availability
Header 215 Read data block
Header 214 Write data block
Header 192 Request build code
Header 172 Emergency stop
Header 171 Request hopper coin
Header 169 Request address mode
Header 168 Request hopper dispense count
Header 167 Dispense hopper coins
Header 166 Request hopper status
Header 165 Modify variable set
Header 164 Enable hopper
Header 163 Test hopper
Header 161 Pump RNG
Header 160 Request cipher key
Header 004 Request comms revision
Header 003 Clear comms status variables
Header 002 Request comms status variables
Header 001 Reset device

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 29 of 53

16.1 Commands in Detail
All byte values shown in [decimal] unless otherwise stated.

Header 254: Simple poll

Transmitted data : <none>
Received data : ACK

This is a good command to use to confirm that a device is plugged into the expected
address, powered-up and operating correctly. A total of 5 bytes are sent to the hopper which
then replies with 5 bytes.

Header 253: Address poll

Transmitted data : <none>
Received message : {variable delay} <slave address byte>

Only a single byte is returned by the hopper rather than a full ccTalk message packet.

See the ccTalk generic specification for more details.

Header 252: Address clash

Transmitted data : <none>
Received message : {variable delay} <slave address byte>

Only a single byte is returned by the hopper rather than a full ccTalk message packet.

See the generic specification for more details.

Header 251: Address change

Transmitted data : [address]
Received data : ACK

The address specified overrides that determined by the connector wiring loom. The new
value is lost at power-down or reset.

Header 250: Address random

Transmitted data : <none>
Received data : ACK

The address is randomly set to a value between 3 and 255. The broadcast address 0, the
default bus master address 1, and the default coin acceptor address 2, are automatically
avoided for your convenience. The new value is lost at power-down or reset.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 30 of 53

Header 247: Request variable set

Transmitted data : <none>
Received data : [current limit] [motor stop delay] [payout timeout]
 [maximum current measured] [supply voltage]
 [connector address] [current limit]

This is the current threshold at which the motor reverses in order to clear jams.

Refer to CURLMT in Appendix A for details of scaling and its default value.

[motor stop delay]
This is the time the motor is allowed to run on for after detecting the last coin in a payout
sequence and should be sufficient for the coin to exit cleanly.

Refer to STOPDLY in Appendix A for details of scaling and its default value.

[payout timeout]
This is the total amount of time allowed for each coin to be paid out, allowing for some
reversing in the event of a jam. After this time, the motor is stopped.

Refer to PAYTIM in Appendix A for details of scaling and its default value.

[maximum current measured]
Measured with the same units as [current limit]. The current is sampled and averaged as
the motor is running and should be used as an approximate guide only.

This measurement can be cleared to zero with the ‘Reset device’ command.

[supply voltage]
The hopper can measure its own power supply voltage and report it back to the host
machine. The supply voltage is sampled continuously when not paying out coins.

Refer to SUPVOLTS in Appendix A for details of scaling.

[connector address]
Range 0 to 7.

This is the number specified by the address select pins on the connector. The device
address on the ccTalk bus is this value plus 3 if it hasn’t been changed subsequently on
serial.

Note that this value is recorded at power-up or reset only.

Software Design Note : Future products may see some additional information returned by
this command. To ensure backwards compatibility, the existing data packet will be retained (
in both order and type) and any additional information tagged to the end. If a feature is not
supported, the relevant byte will return zero.

Header 246: Request manufacturer id

Transmitted data : <none>
Received data : “Money Controls”

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 31 of 53

Header 245: Request equipment category id

Transmitted data : <none>
Received data : “Payout”

Header 244: Request product code

Transmitted data : <none>
Received data : “SUH1”

SUH = Serial Universal Hopper Mk1.

Header 242: Request serial number

Transmitted data : <none>
Received data : [serial 1 - LSB] [serial 2] [serial 3 - MSB]

This is a 24-bit binary serial number.

Prototype units return…
 [78] [97] [188] in decimal
 [4E] [61] [BC] in hex

 = 12,345,678

If you work it out as 5,136,828 you have the bytes in reverse order!

Production units will be supplied with a unique, incremental serial number. Serial numbers
cannot be changed by any easy means.

Header 241: Request software revision

Transmitted data : <none>
Received data : “SUH1-Vx.y”

x, y = 0, 1, 2… depending on the revision level of the software.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 32 of 53

Header 236: Read opto states

Transmitted data : <none>
Received data : [payout opto]

[payout opto]
Bit mask :
B0 - payout opto A (0 = path clear, 1 = path blocked)
B1 - payout opto B
B2 - payout opto C
B3 to B6 - not used, 0 returned
B7 - payout opto A + B + C

The payout opto whose status is returned on bit 7 is actually comprised of 3 separate opto
paths - A, B and C. If a coin is seen at any of these optos then bit 7 is set.

The optos are continuously sampled in the background and the current state is reported by
this command.

Note that this command is designed for test purposes only (checking coin visibility on the
opto-electronics) and not for counting coins during a payout sequence ! Counting coins
during payout is handled automatically by the software and is performed a lot faster than
polling serially.

Header 219: Enter new PIN number

Transmitted data : [PIN1] [PIN2] [PIN3] [PIN4]
Received data : ACK

A factory-fresh hopper has the PIN number mechanism disabled.

A manufacturer can subsequently program the PIN number to any chosen value using this
command and after that the number cannot be changed, even if the existing PIN number has
been entered correctly. It is a ‘once-only’ lockout mechanism - turning the power off and on
does not clear the PIN number.

A PIN number of [0] [0] [0] [0] is legal and would have to be entered.

The ‘Dispense hopper coins’ command is the only one which is ‘blocked’ by the PIN number
mechanism - all other commands operate as normal.

Entering a new PIN number after one has already been programmed will still result in the
return of an ACK even though the PIN number remains unchanged.

The ‘Test hopper’ command can be used to see if a PIN number has been programmed -
refer to bit 7 of ‘hopper status register 2’.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 33 of 53

Header 218: Enter PIN number

Transmitted data : [PIN1] [PIN2] [PIN3] [PIN4]
Received data : ACK

If the PIN number mechanism is enabled then the ‘Dispense hopper coins’ command will not
work unless the correct PIN number has been entered. The current PIN number is lost after
a…

¾ power-down
¾ hardware reset
¾ software reset
¾ emergency stop with the motor running

Incorrect PIN numbers are always ACK’ed as if they had worked.

Header 217: Request payout high / low status

Transmitted data : <none>
Received data : [level status]

This command returns the status of the level sensor.

[level status]
Bit mask :
Bit 0 - Low level sensor status (1 = lower than low level trigger)
Bit 1 - High level sensor status (1 = higher than or equal to high level trigger)
Bit 2 - not used
Bit 3 - not used
Bit 4 - Low level sensor support (1 = feature supported and fitted)
Bit 5 - High level sensor support (1 = feature supported and fitted)
Bit 6 - not used
Bit 7 - not used

For the operator…
Bit 0 is set if the hopper is NEARLY EMPTY.
Bit 1 is set if the hopper is NEARLY FULL.

The normal operating condition of the hopper is bits 0 & 1 clear.

If the raw level sensor inputs are reading NEARLY EMPTY as well as NEARLY FULL then
this is an illegal condition (it can only be one or the other) and bits 0 & 1 are both left clear.

The level sensor inputs are debounced with a time Tlevdeb in Appendix B to remove the
effects of shifting coins.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 34 of 53

Header 216: Request data storage availability

Transmitted data : <none>
Received data : [memory type] [read blocks] [read bytes per block]
 [write blocks] [write bytes per block]

[memory type] = 2, permanent (limited use)
[read blocks] = 4
[read bytes per block] = 8
[write blocks] = 3
[write bytes per block] = 8

In other words, 32 bytes of NV Memory are available for reading, 24 bytes for writing,
accessed 8 bytes at a time.

Refer to Appendix D for details of the memory map.

Header 215: Read data block

Transmitted data : [block number]
Received data : [data 1] [data 2]… [data 8]

[block number]
0 to 3

Provides read access to the NV Memory.

Refer to Appendix D for details of the memory map.

Header 214: Write data block

Transmitted data : [block number] [data 1] [data 2]… [data 8]
Received data : ACK

[block number]
0 to 2

Provides write access to the NV Memory.

Refer to Appendix D for details of the memory map.

Header 192: Request build code

Transmitted data : <none>
Received data : 8 x ASCII chars

The build code is determined automatically by the hopper during initialisation. It is assumed
any build options do not change while power remains on the unit, otherwise a software reset
needs to be issued.

‘Lev HiLo’ for high and low level sensor fitted
‘Lev Hi ’ for high level sensor only fitted
‘Lev Lo’ for low level sensor only fitted
‘Standard’ for standard model, no extras (as per SCH1)

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 35 of 53

Header 172: Emergency stop

Transmitted data : <none>
Received data : [payout coins remaining]

If this command is sent during a payout then the motor is stopped immediately as a
precursor to power being lost. The returned byte counter should indicate the remaining coins
to be paid out.

The effect on the ‘Request hopper status’ command is as follows…

[payout coins remaining] Ö Cleared to ZERO
[last payout : coins paid] Ö Coins paid prior to stopping
[last payout : coins unpaid] Ö Coins unpaid prior to stopping

The ‘Emergency stop’ command produces a similar action to a software reset when the
motor is running. This means that the hopper will need to be re-initialised (PIN number,
enable etc.) prior to dispensing further coins.

When the motor is not running, this command returns the [payout coins remaining] value
without performing a reset.

Header 171: Request hopper coin

Transmitted data : <none>
Received data : 6 x ASCII chars

This command returns an ASCII string consisting of 6 characters. These are stored in the NV
Memory.

Coin names are returned as [C] [C] [V] [V] [V] [I] - refer to the ccTalk generic
specification for an explanation of the format.

The ‘unprogrammed’ state of the coin name may typically be 6 x ASCII code 45
(------) or 6 x ASCII code 0.

Note : There is no facility currently in production software to program in the name of the coin
that will be dispensed, particularly as this is a ‘Universal’ hopper and may be used to
dispense a variety of coins. The machine manufacturers will be at liberty to program in their
own coin labels using the ‘Write data block’ command.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 36 of 53

Header 169: Request address mode

Transmitted data : <none>
Received data : [address mode]

The address selection method is determined by the product and in this case the value 4A
hex is always returned. The use of this command is ‘informational only’ but will be useful in
future when a number of serial hopper products exist on the market which have different
address selection mechanisms.

[address mode]
Bit mask :
B0 - Address is stored in ROM
B1 - Address is stored in RAM
B2 - Address is stored in EEPROM or battery-backed RAM
B3 - Address selection via interface connector
B4 - Address selection via PCB links
B5 - Address selection via switch
B6 - Address may be changed with serial commands (volatile)
B7 - Address may be changed with serial commands (non-volatile)

4A hex = Address stored in RAM
 Address selection via interface connector
 Address may be changed with serial commands (volatile)

The address of the hopper defaults to that in the connector wiring after a power-up or
software reset.

Header 168: Request hopper dispense count

Transmitted data : <none>
Received data : [no. of coins 1 - LSB] [no. of coins 2] [no. of coins 3 - MSB]

Range 0 to 16,777,215.

The dispense counter records the number of coins dispensed since the counter was last
cleared.

The counter returned is the ‘reset-able’ one, not the life counter which is made available via
the ‘Read data block’ command. See the memory map description in Appendix D for more
details and the mechanism for clearing the counter.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 37 of 53

Header 167: Dispense hopper coins

Transmitted data : [sec 1] [sec 2] [sec 3] [sec 4]
 [sec 5] [sec 6] [sec 7] [sec 8] [N coins]
Received data : [event counter]

[sec…] security bytes
The ‘Dispense hopper coins’ command is protected by a sophisticated encryption
mechanism. In multi-coin payout mode, between 1 and 255 coins can be dispensed, and the
command is transmitted with a 64-bit cryptographic code. Unless the cryptographic key
matches exactly then no coins can be paid out.

If ‘N coins’ is set to zero then no coins are paid out but the message is handled normally and
the event counter is incremented.

[event counter]
Value of the event counter after it has been incremented.
Normal range = 1 to 255. Zero indicates a power-up or reset has occurred.

If the received data packet has a checksum error then the event counter cannot be relied
upon and this command should not be repeated to avoid over-payment of coins. The event
counter must be read with the ‘Request hopper status’ command and compared with the last
known value.

For the payout to occur as intended, the following conditions have to be met…

¾ Valid ccTalk message - no errors in format or checksum
¾ PIN number has previously ‘unlocked’ the hopper (if the mechanism is

enabled)
¾ Cryptographic code is correct
¾ No. of coins = 1 in single coin payout mode
¾ Hopper enabled - see ‘Enable hopper’ command
¾ No ‘Absolute maximum current exceeded’ error flag
¾ No ‘Opto fraud attempt, path blocked during idle’ error flag
¾ No ‘Opto fraud attempt, short-circuit during idle’ error flag
¾ No ‘Opto fraud attempt, short-circuit during payout’ error flag
¾ No ‘Opto blocked permanently during payout’ error flag

If any of the above error flags are set (test by using the ‘Test hopper’ command) then
payout is blocked. These flags can be cleared with the ‘Reset device’ command.

If the payout is blocked for any of the reasons above (apart from a low level comms error
which will result in no reply) then a ccTalk NAK message is returned. The event counter is
still incremented and the next encryption key generated by the hopper.

The reason for a dispense fail is deliberately not returned for security reasons.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 38 of 53

Header 166: Request hopper status

Transmitted data : <none>
Received data : [event counter] [payout coins remaining]
 [last payout : coins paid] [last payout : coins unpaid]

 [event counter]

Every valid ‘Dispense hopper coins’ command increments the event counter. Valid means
there was no comms error in the command packet.

The event counter only has the value 0 at power-up or reset - if its value is 255 and another
dispense command is received then the event counter changes to 1. Then 2, 3, 4 etc.

The event counter is added for security reasons - if the reply to a ‘Dispense hopper coins’
command is corrupted or missing due to noise then the event counter should be checked
prior to re-transmitting the command to prevent over payout of coins. Correctly written host
software should always check the event counter before re-sending a dispense command.

[payout coins remaining]
After a ‘Dispense hopper coins’ command this counter is primed with the number of coins to
pay out. It then decrements with each coin dispensed until it reaches zero.

[last payout : coins paid]
The number of coins paid out in the last ‘Dispense hopper coins’ command. This counter
increments as coins are being paid out.

[last payout : coins unpaid]
The number of coins which failed to be paid out in the last ‘Dispense hopper coins’
command. This counter is cleared during a payout.

As soon as a dispense hopper coins command is received, the status bytes are updated as
follows…

[payout coins remaining] Ö ‘N coins’ / decrements as each coin is paid out
[last payout : coins paid] Ö Cleared to ZERO / increments as each coin is paid out
[last payout : coins unpaid] Ö Cleared to ZERO

When payout is completed (success or abort) then the status bytes become…
[payout coins remaining] Ö Cleared to ZERO
[last payout : coins paid] Ö Correct value for last operation
[last payout : coins unpaid] Ö Correct value for last operation

Host software should always wait for [payout coins remaining] to reach zero before
deciding what to do next.

Request hopper status : Coding Recommendations

Using life test results, Money Controls can now make the following coding
recommendations…

Polling the hopper status after a ‘Dispense hopper coins’ command is best done every
200ms. It is essential that a retry mechanism is put in place such that if there is no reply to
the ‘Request hopper status’ command after 50ms then it is sent again. The number of
sequential retries allowed before a hardware fault is suspected should be set at around 10.
The reason for the heavy retry mechanism is the electrical noise generated by the motor. If
suitable measures are taken in software then the serial communication link should be 100%
reliable and this has been confirmed by tests at Money Controls.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 39 of 53

Header 165: Modify variable set

Transmitted data : [current limit] [motor stop delay]
 [payout timeout] [single coin mode]
Received data : ACK

Refer to ‘Request variable set’ for more details - the format of data is the same.

[single coin mode]
0 - set multi-coin payout mode (default)
1 - set single coin payout mode
(any other value is treated as multi-coin payout mode)

For security reasons, once a hopper is set to single coin payout mode it cannot be
changed back to multi-coin payout mode with this command. A power-down or
hardware / software reset is required.

This command allows some of the motor control variables to be modified but does not
necessarily have to be sent before using the hopper. The default values listed in Appendix A
are normally optimal.

Variable set changes are volatile. Any custom values are lost at power-down or reset.

Software Design Note: Future products may see some additional information sent by this
command. To ensure backwards compatibility, the existing data packet will be retained (in
both order and type) and any additional information tagged to the end. If a feature is not
supported, the relevant byte will be ignored.

Header 164: Enable hopper

Transmitted data : [enable code]
Received data : ACK

[enable code]
165 - enable hopper payout
not 165 - disable hopper payout

The hopper must be enabled before coins can be paid out. Only the decimal value 165 (A5
hex, 10100101 binary) enables it, all other values disable it.

If a hopper is disabled prior to a ‘Dispense hopper coins’ command, a NAK is returned.

A ‘Reset device’ command or a power-down cycle will cause the hopper to be
disabled by default.

This command is retained for compatibility with SCH1 rather than its negligible effect on
security.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 40 of 53

Header 163: Test hopper

Transmitted data : <none>
Received data : [hopper status register]

This command reports back various operating and error flags from the hopper and is the
equivalent of the ‘Perform self-check’ command in coin acceptors.

[hopper status register 1]
Bit mask :
B0 - Absolute maximum current exceeded 1 = exceeded
B1 - Payout timeout occurred 1 = occurred
B2 - Motor reversed during last payout to clear a jam 1 = reversed
B3 - Opto fraud attempt, path blocked during idle 1 = fraud
B4 - Opto fraud attempt, short-circuit during idle 1 = fraud
B5 - Opto blocked permanently during payout 1 = blocked
B6 - Power-up detected 1 = power-up
B7 - Payout disabled 1 = disabled

The ‘Payout timeout occurred’ flag is cleared prior to each dispense operation.

Once it has been set, the ‘Motor reversed during last payout to clear a jam’ flag stays latched
through subsequent dispense operations but may be cleared with a software reset.

 [hopper status register 2]
Bit mask :
B0 - Opto fraud attempt, short-circuit during payout 1 = fraud
B1 - Single coin payout mode 1 = single
B2 - Checksum A error 1 = error
B3 - Checksum B error 1 = error
B4 - Checksum C error 1 = error
B5 - Checksum D error 1 = error
B6 - Power fail during NV Memory write 1 = fail
B7 - PIN number mechanism 1 = enabled

‘Opto fraud attempt, short-circuit during payout’ occurs if light is shone at the hopper exit
optos during a dispense operation.

Refer to Appendix D for details of the checksum types.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 41 of 53

Table 4: Flag Action Table:.

Short Label
Dispense coins
requirement ?

Action on Power-Up or
Hardware Reset

Action on
Software Reset

Max. Curr. Yes Cleared Cleared
Timeout - Cleared Cleared
Reverse - Cleared Cleared
Idle block Yes Cleared Cleared
Idle s/c Yes Cleared Cleared
Block Yes Cleared Cleared
Power-up - Set on PU only Cleared
Disabled Yes Set Set
Pay s/c Yes Cleared Cleared
Single - Cleared Cleared
Check A - Calculated Calculated
Check B - Calculated Calculated
Check C - Calculated Calculated
Check D - Calculated Calculated
NV Fail - ‘NV Memory’ ‘NV Memory’
PIN - ‘NV Memory’ ‘NV Memory’

Header 161: Pump RNG

Transmitted data : [random 1] [random 2] [random 3] [random 4]
 [random 5] [random 6] [random 7] [random 8]
Received data : ACK

This command pumps the random number generator of the hopper with extra random
variables to make prediction of the next random number in the sequence a lot harder. Its use
is optional but recommended where security is paramount.

Header 160: Request cipher key

Transmitted data : <none>
Received data : [key 1] [key 2] [key 3] [key 4]
 [key 5] [key 6] [key 7] [key 8]

This command requests the encryption key required for coin payout. It may be requested
repeatedly in the event of a comms error since it only changes after a…

¾ ‘Dispense hopper coins’ command
¾ ‘Pump RNG’ command
¾ Power-down or any type of reset

Header 004: Request comms revision

Transmitted data : <none>
Received data : [ccTalk level] [major revision] [minor revision]

[ccTalk level] = 1
[major revision] = 3
[minor revision] = 2

In other words, the first issue level of ccTalk specification 3.2

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 42 of 53

Header 003: Clear comms status variables

Transmitted data : <none>
Received data : ACK

Clears the counters returned by the ‘Request comms status variables’ command.

Header 002: Request comms status variables

Transmitted data : <none>
Received data : [rx timeouts] [rx bytes ignored] [rx bad checksums]

[rx timeouts]
Number of receive message timeouts recorded by the processor.

There is an inter-byte timeout value of Trxout - see Appendix B. The ccTalk protocol has a
variable length packet structure but data timeouts can be detected and counted.

[rx bytes ignored]
Number of receive bytes ignored by the processor (due to receive buffer overflow).

SUH has a receive buffer length of 15 bytes for the data part of the packet - the header and
checksum are stored elsewhere. Packets with more than 15 bytes of data increase the
ignored counter by the total number of data bytes. So sending a message with 20 data bytes
would increase the ignored bytes by 20. Likewise a message with 15 or less would not do
anything to the counter, a message with 16 by 16 and a message with 252 by 252.

[rx bad checksums]
Number of messages received by the processor with bad checksums.

All these counters are cumulative and wrap around to 0 after 255.

When testing a new software driver, it is worth checking these counters after a series of
message transactions to confirm all is well.

Header 001: Reset device

Transmitted data : <none>
Received data : ACK

This is the command required for a ‘software reset’.

An ACK is returned prior to resetting.

Host software should allow a delay after the ACK before sending the next command to allow
the hopper initialisation code to complete - see TSinit in Appendix B.

After a ‘Reset device’ command, various status flags are cleared (see the ‘Test hopper’
command).

Any motor parameters sent with a ‘Modify variable set’ command will return to their default
values. Default values are given in Appendix A.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 43 of 53

17. Power Distribution on a Multi-Drop Bus

The multi-drop bus for Serial Universal Hoppers consists of a power, ground and serial data
line. When more than one hopper is attached to the bus, all power is transferred along a single
cable and significant ground potential rises can occur.

The following recommendations are made…

¾ Only operate one serial hopper at a time. Never initiate a second payout
sequence when one is already in progress.

¾ Consider the use of signal conditioning on the serial data line receiver.
Perhaps a high-frequency filter and voltage comparitor input with a mid-rail (
2.5V) threshold.

¾ Consider running separate power cables to the hoppers to alleviate the
ground potential problem.

¾ If communication errors still occur, consider changing the topology of the
multi-drop bus network. A star network will distribute power more evenly than
a ring, tree or daisy-chain network.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 44 of 53

18. Electrical Noise - Physical Measures
The ccTalk protocol is not designed for long distance transfer but for local hook-up of various
peripherals within a machine cabinet. Typical cable lengths are likely to be of the order of a few
metres.

Various measures can be taken to minimise the effects of radiated and conducted noise on the
ccTalk bus.

¾ Use a good quality regulated power supply with mains filtering. The power
rating should be sufficient to handle a Serial Universal Hopper at maximum
surge current.

¾ Do not run the multi-drop bus cables directly next to noisy electrical components
if at all possible. These are typically motors, relays, VDU’s, fluorescent strip
lights etc. If problems are experienced consider the use of screened cable.

¾ Keep cable runs as short as possible.
¾ Make sure the ccTalk data line has an appropriate load resistor at the host end (

typically 1K to 10K pull-up to +5V).
¾ Do not place too many peripherals on the bus - consider the loading effects of

each ccTalk interface circuit. The maximum number allowed will depend on the
host transceiver circuit.

19. Electrical Noise - Software Measures

There is a big difference in security and reliability terms between a good software
implementation of ccTalk and that of a poor one.

The following design points should be noted carefully…

Check each ccTalk reply packet for errors.

¾ Was there a low level byte framing error ?
¾ Were there the correct number of data bytes in the message ?
¾ Was the return destination address correct ?
¾ Was the checksum correct ?
¾ Was the peripheral source address the one expected ?
¾ Was the return header zero ?

If a reply is returned with an error then the ccTalk command can be re-transmitted as many
times as deemed appropriate - this is a key feature of ccTalk.

Note that the [rx bad checksums] byte returned by the ‘Request comms status variables’
command is useful for monitoring noise.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 45 of 53

20. Electrical Specification
24 volt motor version

Table 5: Electrical Specification

Electrical Specification Value

Supply Voltage +19 to 26V

Typical Operating Current/No Load 300mA typical

Typical Operating Current/Max Load 700mA typical

Surge Current/Start Up and Reverse 2.5A peak

20.1 Coin Payout:

Table 6: Coin Payout Rate

Mode Rate

Multi coin payout 3 - 5 coins per second approx

Single coin payout 1.5 coins per second approx

The much slower single-coin payout mode is due mainly to the overheads of encryption.

20.2 Environmental:

Table 7: Environmental Ranges

Environment Value

Operating Temperature 0 to 600 C

Storage Temperature -20 to 700 C

Operating Humidity 10 to 75% RH

Storage Humidity 10 to 95% RH non condensing

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 46 of 53

21. Maintenance Schedule

Table 8: Maintenance Schedule

Maintenance Schedule

Every 100,000 coins Clean the light guide using a mild detergent on a damp
cloth. No spray solvents should be used.

Expected product lifetime: 3 million coins with routine maintenance

22. Fault Finding and Repair

Table 9: Fault Finding and repair.

Problem: Check: Cure:

Ensure coin exit is clear. Remove blockage from coin exit.

Ensure correct coins in hopper. Fill hopper with correct coins. Coins fail to unjam:
Ensure no badly bent coins in
hopper.

Remove bent coin/s.

Supply fuse. Replace fuse.

Protection device tripped. Wait 30 seconds with supply
OFF. Motor fails to run:

Hopper has detected an opto fault. Check EEPROM flags.

Over payout of coins: Check opto area/coin exit area for
dirt.

Clean opto/coin exit area.

Check opto area/coin exit area for
dirt.

Clean opto/coin exit area.
Under Payout Of
Coins: Ensure hopper contains sufficient

coins. Refill hopper.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 47 of 53

23. Appendix A

23.1 Conversion Equations & Default Values

Table 10: Conversion Equations & Default Values:.

Label Scaling & Units
Default Byte

Value
Default Physical

Value

CURLMT N / 17.1 Amps 20 1.2A

STOPDLY N ms 0 0ms

PAYTIM N * 0.333 s 30 10s

SUPVOLTS 0.2 + N * 0.127 Volts 188 24V

23.2 Limits
The value of CURLMT cannot be set lower than 6 (which corresponds to 0.35A) otherwise
the unit will not operate properly. If a value smaller than 6 is specified, the original value is
retained.

The value of STOPDLY cannot be set greater than 50 (50ms) for security reasons. If a
value larger than 50 is specified, the value is clamped at 50.

23.3 Software Reset
A software reset will force the motor parameters to return to their default values, regardless
of their current state.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 48 of 53

24. Appendix B

24.1 Timing Parameters

Table 11: Timing Parameters:.
Nominal values are shown.

Label Description Value Units

Xtal PIC Resonator 4.0 MHz

Brate Serial communication baud rate 9600 baud

Trxout Receive data timeout 25 ms

Vtrip Power-fail trip threshold (+24V motor) 16 V

TPinit Power-up initialisation time 600 ms

TSinit Software reset initialisation time < 40 ms

TMreverse Motor reversing time 150 ms

TEESave EEPROM data save time 17 ms

Ifuse Absolute maximum trip current 5 A

Tlevdeb Level sensor debounce time 2 s

 Comms reply delay : Simple poll < 2 ms

 Comms reply delay : Enter PIN number (correct) < 2 ms

 Comms reply delay : Enter PIN number (wrong) 235 ms

 Comms reply delay : Write data block 8 ms

 Comms reply delay : Dispense hopper coins < 4 ms

 Comms reply delay : Request hopper status < 2 ms

 Comms reply delay : Pump RNG < 2 ms

 Comms reply delay : Request cipher key < 2 ms

24.2 Opto Security Timing
When idle, the hopper software tests the optos on a pseudo-random basis to make a
deliberate fraud attempt much harder. The sampling period varies between 15 and 255
milliseconds. When paying out coins, the sampling period changes to between 64 and 127
milliseconds.

24.3 Hopper Initialisation
No serial communication is possible during the ‘TPinit’, ‘TRinit’ and ‘TSinit’ time.

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 49 of 53

25. Appendix C

25.1 ccTalk Interface Circuit
This is the ccTalk electronic interface circuit on SUH.

There are many options for the host interface circuit but we recommend an open-collector
drive.

Figure 3: ccTalk Interface Circuit:

2K2

47R

5.1V
350mW
Zener

+5V

0V

to
PIC16C73
pins 17/18

ccTalk
Data
I/O

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 50 of 53

26. Appendix D

26.1 NV Memory Map Description

Table 12: NV Memory Map Description:.

Block
No.

Length
Bytes Description

Read / Write
Permission

0 8 User data R / W

1 6 Coin name R / W

1 2 User data R / W

2 3 Hopper dispense count R / W

2 1 Checksum A R / W

2 1 Last payout : coins paid R / W

2 1 Checksum B R / W

2 1 Last payout : coins unpaid R / W

2 1 Checksum C R / W

3 3 Hopper life dispense count Read Only

3 1 Checksum D Read Only

3 1 Black Box Recorder A Read Only

3 1 Black Box Recorder B Read Only

3 1 Black Box Recorder C Read Only

3 1 Black Box Recorder D Read Only

User data
10 bytes of user data are available to the host machine for any kind of storage requirement.
The data can be ASCII test or binary data - there is no restriction on format. All 8 bytes of
block 0 are available, together with the top 2 bytes of block 1.

Coin name
The name of the hopper coin, if programmed. Users can program their own coin names. The
ASCII string stored in these locations is returned by the ‘Request hopper coin’ command.

Hopper dispense count
The total no. of coins dispensed since the counter was reset.

Note that the ccTalk command ‘Request hopper dispense count’ should be used to read the
value of this counter. The value in EEPROM is not updated until power-down or reset.

Last payout : coins paid
The no. of coins dispensed by the last command.

Continued…

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 51 of 53

Last payout : coins unpaid
The no. of coins which failed to be dispensed by the last command.

Hopper life dispense count
The total no. of coins dispensed since the product was manufactured.

Note that the life dispense count is only updated when the NV Memory is updated - i.e.
when power is removed or at reset. It does not hold a running count value like the ‘hopper
dispense count’.

Checksums and Black Box Recorders
Each counter is protected by a null checksum such that the 8-bit addition of all counter bytes
and the checksum byte is zero.

If the software detects a checksum fail then the corresponding checksum error flag is set (
refer to the ‘Test hopper’ command) and the black box recorder byte is incremented. The
black box recorder bytes are used to monitor problems with the power-fail electronics.

Example - Clearing the Hopper dispense count

This can be achieved by reading block 2 and writing it back with the appropriate bytes
cleared to zero.

Complete message packets shown. Data values in decimal. Hopper is address 3.

Read Cycle
TX : [3] [1] [1] [215] [2] [checksum] - Read block 2
RX : [1] [8] [3] [0] [count 1] [count 2] [count 3] [count checksum]
 [data 1] [data 2] [data 3] [data 4] [checksum]

Write Cycle
TX : [3] [9] [1] [214] [2] [0] [0] [0] [0] - Write block 2
 [data 1] [data 2] [data 3] [data 4] [checksum]
RX : [1] [0] [3] [0] [252] - ACK

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 52 of 53

27. Appendix E
Request Hopper Status Examples

The reply from the ‘Request hopper status’ command is…

[event counter] [payout coins remaining] [last payout : coins paid] [last payout : coins unpaid]

 Dispense 1 coin in single coin mode

Hopper status = 01 01 00 00
Hopper status = 01 01 00 00
Hopper status = 01 01 00 00
Hopper status = 01 00 01 00 Paid 1 coin

 Dispense 5 coins in multi-coin mode

Hopper status = 02 05 00 00
Hopper status = 02 05 00 00
Hopper status = 02 04 01 00
Hopper status = 02 04 01 00
Hopper status = 02 03 02 00
Hopper status = 02 03 02 00
Hopper status = 02 02 03 00
Hopper status = 02 02 03 00
Hopper status = 02 01 04 00
Hopper status = 02 01 04 00
Hopper status = 02 00 05 00 Paid 5 coins

Dispense 5 coins in multi-coin mode. Only 2 coins in hopper

Hopper status = 03 05 00 00
Hopper status = 03 04 01 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 03 02 00
Hopper status = 03 01 01 03 Partial result - ignore
Hopper status = 03 00 02 03 Paid 2 coins, 3 remaining

SUH Technical Manual TSP031.doc Issue 1.5 – Oct 2005

Money Controls 2005. All rights reserved.
 Page 53 of 53

This manual is intended only to assist the reader in the use of this product and
therefore Money Controls shall not be liable for any loss or damage whatsoever
arising form the use of any information or particulars in, or any incorrect use of the
product. Money Controls reserve the right to change product specifications on any
item without prior notice.

	Contents:
	1.Diary of Changes4
	2.Introduction5
	3.Safety Note5
	4.Mechanical Description5
	5.Mechanical Features6
	5.1Hopper Dimensions6
	5.2Hopper Weight6
	5.3Coin Size Range6
	5.4Coin Capacity6
	Overall Dimensions7
	7.Installation and Removal8
	7.1Securing the hopper base8
	7.2Using the 4mm Holes8
	7.3Dismantling the hopper8
	7.4Hopper Assembly8
	8.Why Serial ?9
	9.Product Features10
	10.ccTalk Design Parameters12
	10.1Serial Connector Type13
	10.11Serial Connector Pinout13
	10.2Address Selection14
	11.Encryption Mechanism15
	11.1PIN Number Mechanism17
	12.Power Fail Recovery19
	12.1Power Fail in Detail20
	13.What happens…?22
	13.1What happens after Power Up ?22
	13.2What happens after Software Reset ?23
	14.Simple Coin Payout24
	15.Full Initialisation & Payout Sequence25
	16.Command List28
	16.1Commands in Detail29
	17.Power Distribution on a Multi-Drop Bus43
	18.Electrical Noise - Physical Measures44
	19.Electrical Noise - Software Measures44
	20.Electrical Specification45
	20.1Coin Payout:45
	20.2Environmental:45
	21.Maintenance Schedule46
	22.Fault Finding and Repair46
	23.Appendix A47
	23.1Conversion Equations & Default Values47
	23.2Limits47
	23.3Software Reset47
	24.Appendix B48
	24.1Timing Parameters48
	24.2Opto Security Timing48
	24.3Hopper Initialisation48
	25.Appendix C49
	25.1ccTalk Interface Circuit49
	26.Appendix D50
	26.1NV Memory Map Description50
	27.Appendix E52
	Figures:
	Figure 1: Hopper Dimensions7
	Figure 2: SUH Connector13
	Figure 3: ccTalk Interface Circuit:49
	Tables:
	Table 1: Coin Capacities6
	Table 2: Address Selection.14
	Table 3: Command List.28
	Table 4: Flag Action Table:.41
	Table 5: Electrical Specification45
	Table 6: Coin Payout Rate45
	Table 7: Environmental Ranges45
	Table 8: Maintenance Schedule46
	Table 9: Fault Finding and repair.46
	Table 10: Conversion Equations & Default Values:.47
	Table 11: Timing Parameters:.48
	Table 12: NV Memory Map Description:.50
	Diary of Changes
	Issue 1.0 First Issue2nd October 2002
	Information based on SUH Product Manual V1.1
	Issue 1.18th November 2002
	TOC Section 5 now visible
	Ammended headers.
	Issue 1.218th August 2003
	Applied TMWP V3.2
	Added picture of Cinch connector - Figure 2.
	Changed ccTalk® to ccTalk throughout the documen�
	Added Un-Encryption note in sections 8 and 11.
	Issue 1.330th June 2004
	Changed footer
	Issue 1.42nd Nov 2004
	Added section 3 Safety Note.
	Issue 1.513th Oct 2005
	Corrected the overall dimensions in Figure 1.
	Introduction
	The Universal Hopper with Serial Interface is a serially controlled version of the popular Universal Hopper manufactured by Money Controls. The serial interface is ccTalk, firmly established as a leading, low-speed, device control protocol in the money-t
	Safety Note
	To meet the requirements for EN 60950 the equipment must be installed according to the
	following requirements:-
	The equipment must be protected by a 3A fuse.
	The equipment must be supplied from a SELV limited power source.
	The equipment must be installed in an enclosure but positioned so that it is external to any fire enclosure area within the main enclosure.
	Mechanical Description
	Each hopper contains a coin track which consists of individual plates clipped together. The track is driven via gears from a motor. The track moves in an anti-clockwise direction (viewed from the end plate side). As the track moves, it picks coins u
	An optical coin detector is created by infrared transmitters and photo detectors situated on the PCB which is sited in the exit window. The infrared light beam is routed across the exit slot via a light guide. When a coin passes through the exit the ligh
	Although the Universal Hopper is called ‘Universa
	These are:-
	Large coin = (30.1 - 31.0 mm dia)
	Standard coin track = (21.0 - 30.0 mm dia)
	Small coin track = (17.5 - 20.9 mm dia)
	Euro track = \(€2, €1, 50c, 20c, 10c, 5c\)
	Euro small coin = (16.25 - 20.9 mm dia) - previously called the small thin coin.
	Mechanical Features
	Hopper Dimensions

	The hoppers overall dimensions, mounting arrangement, coin entry and exit points are detailed in Figure 1.
	Hopper Weight

	Empty = 1.87 Kg
	Coin Size Range

	Hoppers can be configured to pay out coins in the diameter range 16.0mm - 31.0mm, and within the thickness range 1.25mm - 3.50mm.
	Coin Capacity

	The coin capacity of the hopper is between 700 and 3500 depending on their physical size.
	Table 1: Coin Capacities
	Coin
	Diameter (mm)
	Thickness (mm)
	SUH Capacity
	£2
	28.40
	2.50
	760
	£1
	22.50
	3.10
	940
	50p new
	27.30
	1.80
	1130
	20p
	21.40
	1.80
	1840
	10p
	24.50
	1.83
	1400
	5p
	18.00
	1.73
	2720
	2p
	25.90
	1.80
	1120
	1p
	20.25
	1.43
	2350
	
	
	
	
	
	
	
	Note: these capacities are subject to a +/- 10% error.

	Overall Dimensions
	Figure 1: Hopper Dimensions
	Installation and Removal
	Warning: Ensure that the power has been disconnected from the hopper before removal.
	Securing the hopper base

	A set of fixing holes have been provided in the baseplate to allow the hopper to be
	secured in a host machine.
	Using the 4mm Holes

	Drill 6 holes on the centres
	Set the baseplate over holes and fix into position using M3 screws
	Dismantling the hopper

	Please refer to the Universal Hopper Service Manual TSP053 for full details.
	Hopper Assembly

	Please refer to the Universal Hopper Service Manual TSP053 for full details.
	Why Serial ?
	Coin hoppers traditionally have a simple parallel
	Serial gives immediate benefits for security as an encrypted (see note below) dispense command is needed to pay out any coins from the hopper, and the hopper itself counts the coins coming out. The opportunities for an external attack are much reduced.
	Another benefit of ‘multi-drop’ serial is the abi
	The inherent ‘expandability’ of serial allows for
	Product Features
	SUH represents to date the most sophisticated serial coin hopper in the world. Responding to comments from the leading UK machine manufacturers, Money Controls has designed in an unprecedented level of security.
	The following features are available on SUH…
	Coin dispensing security. The serial command to p
	Payout modes. The hopper defaults to multi-coin payout mode which pays up to 255 coins in a single dispense command. For extra security the hopper can be placed in single coin payout mode which only allows one coin to be paid out at a time.
	PIN number security. There is an option to protect the hopper with a PIN number so that if it is stolen from a machine and plugged into another one it cannot be made to work. It is the equivalent of a mechanical lock with the machine manufacturer generat
	Opto security. During idling (no coins being paid out), the exit optos are randomly pulsed. If a blockage is seen while driving the opto or a short-circuit seen while not driving the opto then an alarm condition is generated. During pay out, if a sho
	Anti-jam operation. If the hopper experiences a coin jam during a payout sequence it will automatically reverse in order to clear the jam.
	Software fuse. If an absolute maximum current threshold is exceeded (factory pre-set) then the hopper aborts payout with an error code.
	Polyswitch protection. The motor driver terminals are protected with a polyswitch for additional overload protection.
	Power fail protection. A non-volatile memory keeps track of coins paid out. If power is lost during a payout sequence then the residual number of coins to pay can be read back after the machine re-initialises.
	Unique serial number. Each hopper is manufactured with a unique 24-bit serial number which cannot be modified by external means.
	Coin counting. Two counters record the number of coins paid out of the hopper. One is reset-able by the user, the other is a life counter. Both are implemented in NV Memory.
	Data integrity. All coin counter values in NV Memory are stored with a 8-bit checksum to ensure data integrity.
	Level plate support. There is an option to fit high or low level plates and the status of these can be read by the host machine on serial.
	Continued…
	Remote configuration. Motor parameters such as reversing current and payout timeout can be changed with serial commands. No changes to electronic components are required.
	Multi-drop operation. A number of serial hoppers can be connected to the same serial bus. Device addresses default to those determined by the wiring harness but they can be changed in software to any 8-bit value.
	User memory. 10 bytes of non-volatile memory are available for unrestricted use by the host machine. There are various security and auditing tasks which could be accomplished with this feature.
	Extensive command set. Host software can implement a small or large fraction of the full command set available depending on the application. Commands are available for inhibiting the hopper, reading the state of the exit optos, checking the software revi
	Diagnostic and error reporting. Full access to diagnostic and error codes are made available over serial.
	Code protection. The software is protected with a
	ccTalk Design Parameters
	Refer to issue 4.2 of the ‘ccTalk Serial Communic
	This product is configured as…
	ccTalk b96.p0.v24.a5.d0.c9.m0.x8.i1.r3
	In other words…
	9600 baud / open-collector interface / +24V supply / +5V data /
	supply sink / connector type 9 / slave device / 8-bit checksum /
	implementation level 1 / spec. issue 3
	The hopper can only operate at 9600 baud.
	Serial Connector Type

	Peripheral connector :
	Cinch R76-77848 12-way male
	Figure 2: SUH Connector
	
	SERIAL CONNECTOR PINOUT

	Pin
	Function
	1
	0V
	2
	N.C.
	3
	N.C.
	4
	Address Select 1 - LSB
	5
	/DATA (ccTalk)
	6
	N.C.
	7
	N.C.
	8
	Address Select 2
	9
	+Vs
	10
	N.C.
	11
	N.C.
	12
	Address Select 3 - MSB
	Operation can be achieved with just 3 wires…
	+24V to pin 9
	GND to pin 1
	Bi-directional serial data line to pin 5
	Address Selection

	The default ccTalk bus address for a ‘Payout’ dev
	For applications requiring more than one hopper on the serial bus, one or more of the address select lines may be connected to +Vs. A total of 8 unique bus addresses may be generated in this way, in the range 3 to 10 inclusive.
	Table 2: Address Selection.
	X = Connect to +Vs (Pins 4, 5)
	Serial
	Address
	Address select 3
	Address select 2
	Address select 1
	3
	X
	4
	X
	5
	X
	X
	6
	X
	7
	X
	X
	8
	X
	X
	9
	X
	X
	X
	10
	A number of mating connectors on a multi-drop bus cable may each be wired uniquely to allow operation of multiple hoppers. Since address selection is done externally, any Serial Universal Hopper may be plugged into any position on the bus and the host ma
	Address determination from the connector is only done at power-up or reset. Changing the address select lines afterwards has no effect.
	
	
	
	
	
	
	
	Note : Addresses may be changed in software to va

	Encryption Mechanism
	A 64-bit encryption mechanism is used to ensure that an illegal attempt to dispense coins from SUH is a hugely difficult task. The key to this mechanism is a secret algorithm, not published in this document, which may be obtained from Money Controls afte
	To show the procedure for dispensing a coin an ex
	First of all we pump the random number generator
	Command = Pump RNG
	Transmitted data :[34] [A2] [D7] [0F] [35] [17] [55] [94]
	Received data :ACK
	This is not an essential step but is useful to br
	Then we request a key cipher key…
	Command = Request cipher key
	Transmitted data :<none>
	Received data :[E5] [88] [13] [07] [46] [FE] [29] [05]
	A new cipher key must always be requested prior t
	Now we combine the cipher key with the number of
	Non-encrypted data [E5] [88] [13] [07] [46] [FE] [29] [05] [14]
	In this case we will assume that the CMF (Cryptographic Mapping Function) is simply inverting all the bytes (new data = FF - old data).
	Performing this calculation on each of the bytes
	Encrypted data [1A] [77] [EC] [F8] [B9] [01] [D6] [FA] [14]
	Note that the number of coins to pay out is unencrypted but its value is used in the real CMF.
	Now we send that data to the hopper to pay out a
	Continued…
	Command = Dispense hopper coins
	Transmitted data : [1A] [77] [EC] [F8] [B9] [01] [D6] [FA] [14]
	Received data : [5] - example event counter
	The next time we pay out a coin the cipher key wi
	In practice, the CMF will be far more complex tha
	Money Controls is realistic enough to appreciate that eventually the CMF may fall into the wrong hands whether though huge computing resource or through leaked documentation. We have embedded into our system an undocumented mechanism for changing the CMF
	An obvious hack would be to intercept and change
	PIN Number Mechanism

	A PIN number is provided on SUH as an optional security feature. By default, units are shipped without the PIN number mechanism enabled. If this feature is not required or its use is too restrictive then it can simply be ignored.
	By programming a PIN number into the device, if the hopper device is subsequently powered down or removed to another location then unless the PIN number is known, no coins can be dispensed. This is another layer of defence against the determined hacker w
	Various possibilities include…
	Don’t use a PIN number
	Nice and easy that one.
	Fix the PIN number to the same value always
	This can be done but is not very secure. Once the
	Scramble the PIN number and store in the user memory
	This is quite a clever idea because it means you can randomise the PIN number on each hopper and as long as you know how you scrambled it, it can be recovered, unscrambled and sent to the hopper during the initialisation routine. Security relies on keepi
	Log the PIN number versus serial number
	As each hopper has a unique serial number then this gives a convenient method of storing the serial number against a random PIN number in a central database which all the machines have access too on a network. This is the most secure method because unles
	If you are unfortunate enough to have a hopper for which you have forgotten the PIN number then contact Money Controls for details of any possible recovery mechanism that we may have in place at the time.
	Continued…..
	Example
	This is how to set the PIN number on a new hopper
	Command = Enter new PIN number
	Transmitted data :[1] [2] [3] [4]
	Received data :ACK
	Subsequent use of this command will still return
	As soon as a PIN number is programmed, the ‘Dispe
	Likewise, after powering up SUH with the PIN number mechanism enabled, it must be entered prior to paying out coins.
	Command = Enter PIN number
	Transmitted data :[1] [2] [3] [4]
	Received data :ACK
	Note that an ACK is always returned, even if the PIN number is incorrect. This increases security.
	Power Fail Recovery
	SUH contains a non-volatile memory (EEPROM) for the storage of coin counters. Therefore if power is removed in the middle of a payout sequence then the situation can be recovered and the residual coins paid out after power is restored. This behaviour
	The following counters are saved…
	[Last payout : coins paid] x 1 byte
	[Last payout : coins unpaid] x 1 byte
	[Hopper dispense count] x 3 bytes
	[Hopper life dispense count] x 3 bytes
	along with their corresponding checksums.
	The [Last payout : coins paid] and [Last payou
	The [Hopper dispense count] can be read with th
	The [Hopper life dispense count] can be read by
	After power-up initialisation, the host machine can read the [Last payout : coins unpaid] byte to determine if there are any remaining coins to be paid out after the last session. The decision to pay out any remaining coins is made by the host machine,
	Continued…
	Power Fail in Detail

	The sequence of saving the coin counters to NV Me
	Sudden loss of power with the motor running
	Receipt of an ‘Emergency stop’ command
	If power is suddenly lost with the motor running
	If power is lost after a payout sequence has completed (hopper in idle) then the
	[Last payout : coins unpaid] counter is cleared, regardless of the value it was holding. This is because it is assumed the host machine has dealt with the last payout sequence and taken appropriate action. It is not desirable to flag unpaid coins durin
	If the host machine has early notification of a p
	The use of the hardware reset line (pin 10 of the connector) is not to be used for aborting payout as this does not allow the coin counters to be saved. The coin counters will be incorrect if the hardware reset pin is used during a payout sequence.
	Examples…
	Power lost during payout sequence
	Counter
	Initial value
	Pay 3 from 10 then lose power
	Last payout : coins paid
	0
	3
	Last payout : coins unpaid
	0
	(7(
	Hopper dispense count
	0
	3
	Hopper life dispense count
	N
	N + 3
	Coins remaining = 7
	Continued…
	b\) ‘Emergency stop’ command issued during payou
	Counter
	Initial value
	Pay 3 from 10 then ‘Emergency stop’
	Cycle power off then on
	‘Emergency stop’ return value
	0
	(7(
	0
	Last payout : coins paid
	0
	3
	3
	Last payout : coins unpaid
	0
	7
	ZERO
	Hopper dispense count
	0
	3
	3
	Hopper life dispense count
	N
	N + 3
	N + 3
	Coins remaining = 7
	c\) ‘Emergency stop’ command issued during payou
	after the hopper replies with unpaid coins.
	Counter
	Initial value
	Pay 3 from 10 then ‘Emergency stop’ + late coin
	Cycle power off then on
	‘Emergency stop’ return value
	0
	7
	(6(on retry
	0
	Last payout : coins paid
	0
	4
	4
	Last payout : coins unpaid
	0
	(6(
	ZERO
	Hopper dispense count
	0
	4
	4
	Hopper life dispense count
	N
	N + 3
	N + 4
	Coins remaining = 6
	In this more complicated example, the hopper dispense count and the hopper life dispense count end up with the correct values even though a coin was seen on the exit optos after the motor stopped. For the host machine to find the correct value of unpaid
	Therefore if you need to know the number of remai
	What happens…?
	What happens after Power Up ?

	The following is a guide to what happens when power is lost and re-applied.
	Device Address
	Defaults to the connector address
	PIN Number
	Retained but needs to be re-entered
	Motor Variables
	[current limit] = default value
	[motor stop delay] = default value
	[payout timeout] = default value
	[maximum current measured] = ZERO
	See Appendix A for default values.
	Flags
	Refer to the Flag Action Table within the ‘Test h
	Note that the ‘Power-up’ flag is set to indicate
	Counter checksum flags are updated.
	Counters
	Hopper dispense count = last value
	Hopper life dispense count = last value
	Request hopper status
	[event counter] = ZERO
	[payout coins remaining] = ZERO
	[last payout : coins paid] = last value
	[last payout : coins unpaid] = ZERO or last value if power lost during payout
	Request comms status variables
	[rx timeouts] = ZERO
	[rx bytes ignored] = ZERO
	[rx bad checksums] = ZERO
	Continued…
	What happens after Software Reset ?

	The following is a guide to what happens after a
	Device Address
	Defaults to the connector address
	PIN Number
	Retained but needs to be re-entered
	Motor Variables
	[current limit] = default value
	[motor stop delay] = default value
	[payout timeout] = default value
	[maximum current measured] = ZERO
	See Appendix A for default values.
	Flags
	Refer to the Flag Action Table within the ‘Test h
	Note that the ‘Power-up’ flag is cleared. The hop
	Counter checksum flags are updated.
	Counters
	Hopper dispense count = last value
	Hopper life dispense count = last value
	Request hopper status
	[event counter] = ZERO
	[payout coins remaining] = ZERO
	[last payout : coins paid] = last value
	[last payout : coins unpaid] = last value
	Request comms status variables
	[rx timeouts] = ZERO
	[rx bytes ignored] = ZERO
	[rx bad checksums] = ZERO
	Simple Coin Payout
	The following shows the minimum command set neede
	We will assume that the hopper is on address 3 and has just powered-up.
	Send the following commands…
	Enable hopper
	Request cipher key
	Dispense hopper coins
	Request hopper status
	In detail…
	Message packets are shown in full (not just the data part). The host address is assumed to be 1 and [byte values] are in decimal.
	Enable hopper
	TX:[3] [1] [1] [164] [165] [178]
	RX:[1] [0] [3] [0] [252] = ACK
	Request cipher key
	TX:[3] [0] [1] [160] [92]
	RX:[1] [8] [3] [0] [key 1] [key 2] [key 3] [key 4] [key 5]
	[key 6] [key 7] [key 8] [checksum]
	The data bytes returned by this command are used in the encryption algorithm. For security reasons details of the encryption algorithm are not given in this document.
	Dispense hopper coins
	TX:[3] [1] [1] [167] [sec 1] [sec 2] [sec 3] [sec 4] [sec 5]
	[sec 6] [sec 7] [sec 8] [N coins] [checksum]
	RX:[1] [1] [3] [0] [event counter] [checksum]
	Between 1 and 255 coins can be dispensed with this command.
	Request hopper status
	TX:[3] [0] [1] [166] [86]
	RX:[1] [4] [3] [0] [event counter] [payout coins remaining]
	[last payout : coins paid] [last payout : coins unpaid]
	[checksum]
	This command should be repeated until [payout coins remaining] = 0. Another cipher key can then be requested and more coins dispensed.
	Full Initialisation & Payout Sequence
	This is an example of a full initialisation and p
	Notation : ccTalk command’s are shown highlighted
	Optional… Address Resolution
	If { network indeterminate } then
	Address poll (resolve addresses with BROADCAST address
	While { Address clash on any address } then
	Address random (scramble addresses with BROADCAST address
	Address poll (resolve addresses with BROADCAST address
	Request equipment category id (identify each device on bus
	Address change (assign new addresses if required
	In other words, if we do not know where the serial hoppers are on the bus then we need to locate them. If any of the device addresses clash then we need to scramble them and look again. However, since the wiring harness for the hopper should initialise t
	Inititialisation
	Simple poll (returns ACK to confirm device is attached, powered-up and 9600 baud comms is working fine
	Request equipment category id \(returns ‘Payout
	Request variable set (connector address (physical position in machine)
	Request serial number (store for reference
	Optional… Product Data
	Request manufacturer id \(e.g. ‘Money Controls’
	Request product code \(e.g. ‘SUH’
	Request software revision \(e.g. ‘SUH1-Vx.y’
	Request comms revision (ccTalk comms level
	Request hopper coin (coin name if stored
	Request build code (level sensor details
	PIN Number Unlocking
	Test hopper (check to see if PIN number mechanism is enabled
	If { PIN enabled } then
	Enter PIN number
	else
	Enter new PIN number (randomise and log against serial number for
	future reference
	Optional… Write data block \(log host id in use�
	The PIN number mechanism should only be enabled if the host machine has some way of remembering it ! The easiest method is to make all the PIN numbers the same but that is not very secure. It is much better to randomise them but in that case there will b
	Continued…
	Product Configuration
	Modify variable set (set current limit
	set motor stop delay
	set payout timeout
	set single coin payout mode
	Default values can be used if so desired in which case this command can be skipped. Single coin payout mode is more secure though because once in this mode an external bus attack can at best only pay out a single coin at a time rather than emptying the c
	Remove Payout Inhibit
	Enable hopper (prepare for payout by allowing the dispense command
	Check for Residual Payout from a Power Fail
	Test hopper (check for NV Memory write fail or checksum error
	If { counter error } then
	Write data block (if good host copy exists then correct counter
	else
	Request hopper status (check to see if there are residual coins after last
	payout. If so then take the decision to pay out the balance.
	Optional… Request hopper dispense count \(check�
	copy to see if an illegal payout has been made
	Errors in the hopper memory should not occur under normal operating conditions. If one of the counters become corrupted however it would be possible to restore their contents if the host machine has a backup copy.
	Dispense Coin
	Test hopper (check error flags are clear
	If { error flags } then
	< take appropriate action on possible fraud attempt >
	Reset device (clear error flags
	Enter PIN number (if enabled
	Modify variable set (set current limit, stop delay, timeout, single coin mode
	Enable hopper (re-enable hopper after reset
	Pump RNG (send some random numbers to the hopper
	Request cipher key (ready for encryption algorithm
	Dispense hopper coins (pay out one or more coins
	If { Dispense NAK } then
	Something went wrong - find out why ?
	Continued…
	Dispense Verification
	Request hopper status (check event counter
	If { event counter not incremented } then
	Retry Dispense hopper coins
	While { payout coins remaining > 0 }
	Request hopper status
	Test hopper (check error flags are clear
	If { error flags set } then
	Resolve from the following error conditions…
	<Coin jam> if max. current exceeded
	<Hopper empty> if payout timeout
	<Opto fraud attempt> if any opto error flag
	Optional… Level Auditing
	Request hopper dispense count (store host copy for subsequent verification
	Request payout high / low status (is the hopper nearly empty ?
	Early Notification of Power Fail
	Emergency stop
	Request hopper status (store unpaid coins for next power-up initialisation
	Wait for power to disappear
	Command List
	34 commands are supported…
	Table 3: Command List.
	Header 254
	Simple poll
	Header 253
	Address poll
	Header 252
	Address clash
	Header 251
	Address change
	Header 250
	Address random
	Header 247
	Request variable set
	Header 246
	Request manufacturer id
	Header 245
	Request equipment category id
	Header 244
	Request product code
	Header 242
	Request serial number
	Header 241
	Request software revision
	Header 236
	Read opto states
	Header 219
	Enter new PIN number
	Header 218
	Enter PIN number
	Header 217
	Request payout high / low status
	Header 216
	Request data storage availability
	Header 215
	Read data block
	Header 214
	Write data block
	Header 192
	Request build code
	Header 172
	Emergency stop
	Header 171
	Request hopper coin
	Header 169
	Request address mode
	Header 168
	Request hopper dispense count
	Header 167
	Dispense hopper coins
	Header 166
	Request hopper status
	Header 165
	Modify variable set
	Header 164
	Enable hopper
	Header 163
	Test hopper
	Header 161
	Pump RNG
	Header 160
	Request cipher key
	Header 004
	Request comms revision
	Header 003
	Clear comms status variables
	Header 002
	Request comms status variables
	Header 001
	Reset device
	Commands in Detail

	All byte values shown in [decimal] unless otherwise stated.
	Header 254: Simple poll
	Transmitted data :<none>
	Received data :ACK
	This is a good command to use to confirm that a device is plugged into the expected address, powered-up and operating correctly. A total of 5 bytes are sent to the hopper which then replies with 5 bytes.
	Header 253: Address poll
	Transmitted data :<none>
	Received message :{variable delay} <slave address byte>
	Only a single byte is returned by the hopper rather than a full ccTalk message packet.
	See the ccTalk generic specification for more details.
	Header 252: Address clash
	Transmitted data :<none>
	Received message :{variable delay} <slave address byte>
	Only a single byte is returned by the hopper rather than a full ccTalk message packet.
	See the generic specification for more details.
	Header 251: Address change
	Transmitted data :[address]
	Received data :ACK
	The address specified overrides that determined by the connector wiring loom. The new value is lost at power-down or reset.
	Header 250: Address random
	Transmitted data :<none>
	Received data :ACK
	The address is randomly set to a value between 3 and 255. The broadcast address 0, the default bus master address 1, and the default coin acceptor address 2, are automatically avoided for your convenience. The new value is lost at power-down or reset.
	Header 247: Request variable set
	Transmitted data :<none>
	Received data :[current limit] [motor stop delay] [payout timeout]
	[maximum current measured] [supply voltage]
	[connector address] [current limit]
	This is the current threshold at which the motor reverses in order to clear jams.
	Refer to CURLMT in Appendix A for details of scaling and its default value.
	[motor stop delay]
	This is the time the motor is allowed to run on for after detecting the last coin in a payout sequence and should be sufficient for the coin to exit cleanly.
	Refer to STOPDLY in Appendix A for details of scaling and its default value.
	[payout timeout]
	This is the total amount of time allowed for each coin to be paid out, allowing for some reversing in the event of a jam. After this time, the motor is stopped.
	Refer to PAYTIM in Appendix A for details of scaling and its default value.
	[maximum current measured]
	Measured with the same units as [current limit]. The current is sampled and averaged as the motor is running and should be used as an approximate guide only.
	This measurement can be cleared to zero with the �
	[supply voltage]
	The hopper can measure its own power supply voltage and report it back to the host machine. The supply voltage is sampled continuously when not paying out coins.
	Refer to SUPVOLTS in Appendix A for details of scaling.
	[connector address]
	Range 0 to 7.
	This is the number specified by the address selec
	Note that this value is recorded at power-up or reset only.
	Software Design Note : Future products may see some additional information returned by this command. To ensure backwards compatibility, the existing data packet will be retained (in both order and type) and any additional information tagged to the en
	Header 246: Request manufacturer id
	Transmitted data :<none>
	Received data :“Money Controls”
	Header 245: Request equipment category id
	Transmitted data :<none>
	Received data :“Payout”
	Header 244: Request product code
	Transmitted data :<none>
	Received data :“SUH1”
	SUH = Serial Universal Hopper Mk1.
	Header 242: Request serial number
	Transmitted data :<none>
	Received data :[serial 1 - LSB] [serial 2] [serial 3 - MSB]
	This is a 24-bit binary serial number.
	Prototype units return…
	[78] [97] [188] in decimal
	[4E] [61] [BC] in hex
	= 12,345,678
	If you work it out as 5,136,828 you have the bytes in reverse order!
	Production units will be supplied with a unique, incremental serial number. Serial numbers cannot be changed by any easy means.
	Header 241: Request software revision
	Transmitted data :<none>
	Received data :“SUH1-Vx.y”
	x, y = 0, 1, 2… depending on the revision level o�
	Header 236: Read opto states
	Transmitted data :<none>
	Received data :[payout opto]
	[payout opto]
	Bit mask :
	B0 - payout opto A (0 = path clear, 1 = path blocked)
	B1 - payout opto B
	B2 - payout opto C
	B3 to B6 - not used, 0 returned
	B7 - payout opto A + B + C
	The payout opto whose status is returned on bit 7 is actually comprised of 3 separate opto paths - A, B and C. If a coin is seen at any of these optos then bit 7 is set.
	The optos are continuously sampled in the background and the current state is reported by this command.
	Note that this command is designed for test purposes only (checking coin visibility on the opto-electronics) and not for counting coins during a payout sequence ! Counting coins during payout is handled automatically by the software and is performed
	Header 219: Enter new PIN number
	Transmitted data :[PIN1] [PIN2] [PIN3] [PIN4]
	Received data :ACK
	A factory-fresh hopper has the PIN number mechanism disabled.
	A manufacturer can subsequently program the PIN n
	A PIN number of [0] [0] [0] [0] is legal and would have to be entered.
	The ‘Dispense hopper coins’ command is the only o
	Entering a new PIN number after one has already been programmed will still result in the return of an ACK even though the PIN number remains unchanged.
	The ‘Test hopper’ command can be used to see if a
	Header 218: Enter PIN number
	Transmitted data :[PIN1] [PIN2] [PIN3] [PIN4]
	Received data :ACK
	If the PIN number mechanism is enabled then the ‘
	power-down
	hardware reset
	software reset
	emergency stop with the motor running
	Incorrect PIN numbers are always ACK’ed as if the
	Header 217: Request payout high / low status
	Transmitted data :<none>
	Received data :[level status]
	This command returns the status of the level sensor.
	[level status]
	Bit mask :
	Bit 0 - Low level sensor status (1 = lower than low level trigger)
	Bit 1 - High level sensor status (1 = higher than or equal to high level trigger)
	Bit 2 - not used
	Bit 3 - not used
	Bit 4 - Low level sensor support (1 = feature supported and fitted)
	Bit 5 - High level sensor support (1 = feature supported and fitted)
	Bit 6 - not used
	Bit 7 - not used
	For the operator…
	Bit 0 is set if the hopper is NEARLY EMPTY.
	Bit 1 is set if the hopper is NEARLY FULL.
	The normal operating condition of the hopper is bits 0 & 1 clear.
	If the raw level sensor inputs are reading NEARLY EMPTY as well as NEARLY FULL then this is an illegal condition (it can only be one or the other) and bits 0 & 1 are both left clear.
	The level sensor inputs are debounced with a time Tlevdeb in Appendix B to remove the effects of shifting coins.
	Header 216: Request data storage availability
	Transmitted data :<none>
	Received data :[memory type] [read blocks] [read bytes per block]
	[write blocks] [write bytes per block]
	[memory type] = 2, permanent (limited use)
	[read blocks] = 4
	[read bytes per block] = 8
	[write blocks] = 3
	[write bytes per block] = 8
	In other words, 32 bytes of NV Memory are available for reading, 24 bytes for writing, accessed 8 bytes at a time.
	Refer to Appendix D for details of the memory map.
	Header 215: Read data block
	Transmitted data :[block number]
	Received data :[data 1] [data 2]… [data 8]
	[block number]
	0 to 3
	Provides read access to the NV Memory.
	Refer to Appendix D for details of the memory map.
	Header 214: Write data block
	Transmitted data :[block number] [data 1] [d
	Received data :ACK
	[block number]
	0 to 2
	Provides write access to the NV Memory.
	Refer to Appendix D for details of the memory map.
	Header 192: Request build code
	Transmitted data :<none>
	Received data :8 x ASCII chars
	The build code is determined automatically by the hopper during initialisation. It is assumed any build options do not change while power remains on the unit, otherwise a software reset needs to be issued.
	‘Lev HiLo’ for high and low level sensor fitted
	‘Lev Hi ’ for high level sensor only fitted
	‘Lev Lo’ for low level sensor only fitted
	‘Standard’ for standard model, no extras \(as p
	Header 172: Emergency stop
	Transmitted data :<none>
	Received data :[payout coins remaining]
	If this command is sent during a payout then the motor is stopped immediately as a precursor to power being lost. The returned byte counter should indicate the remaining coins to be paid out.
	The effect on the ‘Request hopper status’ command
	[payout coins remaining] (Cleared to ZERO
	[last payout : coins paid] (Coins paid prior to stopping
	[last payout : coins unpaid] (Coins unpaid prior to stopping
	The ‘Emergency stop’ command produces a similar a
	When the motor is not running, this command returns the [payout coins remaining] value without performing a reset.
	Header 171: Request hopper coin
	Transmitted data :<none>
	Received data :6 x ASCII chars
	This command returns an ASCII string consisting of 6 characters. These are stored in the NV Memory.
	Coin names are returned as [C] [C] [V] [V] [V] [I] - refer to the ccTalk generic specification for an explanation of the format.
	The ‘unprogrammed’ state of the coin name may typ
	(------) or 6 x ASCII code 0.
	Note : There is no facility currently in producti
	Header 169: Request address mode
	Transmitted data :<none>
	Received data :[address mode]
	The address selection method is determined by the
	[address mode]
	Bit mask :
	B0 - Address is stored in ROM
	B1 - Address is stored in RAM
	B2 - Address is stored in EEPROM or battery-backed RAM
	B3 - Address selection via interface connector
	B4 - Address selection via PCB links
	B5 - Address selection via switch
	B6 - Address may be changed with serial commands (volatile)
	B7 - Address may be changed with serial commands (non-volatile)
	4A hex =Address stored in RAM
	Address selection via interface connector
	Address may be changed with serial commands (volatile)
	The address of the hopper defaults to that in the connector wiring after a power-up or software reset.
	Header 168: Request hopper dispense count
	Transmitted data :<none>
	Received data :[no. of coins 1 - LSB] [no. of coins 2] [no. of coins 3 - MSB]
	Range 0 to 16,777,215.
	The dispense counter records the number of coins dispensed since the counter was last cleared.
	The counter returned is the ‘reset-able’ one, not
	Header 167: Dispense hopper coins
	Transmitted data :[sec 1] [sec 2] [sec 3] [sec 4]
	[sec 5] [sec 6] [sec 7] [sec 8] [N coins]
	Received data :[event counter]
	[sec…] security bytes
	The ‘Dispense hopper coins’ command is protected
	If ‘N coins’ is set to zero then no coins are pai
	[event counter]
	Value of the event counter after it has been incremented.
	Normal range = 1 to 255. Zero indicates a power-up or reset has occurred.
	If the received data packet has a checksum error
	For the payout to occur as intended, the followin
	Valid ccTalk message - no errors in format or checksum
	PIN number has previously ‘unlocked’ the hopper �
	Cryptographic code is correct
	No. of coins = 1 in single coin payout mode
	Hopper enabled - see ‘Enable hopper’ command
	No ‘Absolute maximum current exceeded’ error flag
	No ‘Opto fraud attempt, path blocked during idle’
	No ‘Opto fraud attempt, short-circuit during idle�
	No ‘Opto fraud attempt, short-circuit during payo
	No ‘Opto blocked permanently during payout’ error
	If any of the above error flags are set \(test
	If the payout is blocked for any of the reasons above (apart from a low level comms error which will result in no reply) then a ccTalk NAK message is returned. The event counter is still incremented and the next encryption key generated by the hopper
	The reason for a dispense fail is deliberately not returned for security reasons.
	Header 166: Request hopper status
	Transmitted data :<none>
	Received data :[event counter] [payout coins remaining]
	[last payout : coins paid] [last payout : coins unpaid]
	[event counter]
	Every valid ‘Dispense hopper coins’ command incre
	The event counter only has the value 0 at power-up or reset - if its value is 255 and another dispense command is received then the event counter changes to 1. Then 2, 3, 4 etc.
	The event counter is added for security reasons -
	[payout coins remaining]
	After a ‘Dispense hopper coins’ command this coun
	[last payout : coins paid]
	The number of coins paid out in the last ‘Dispens
	[last payout : coins unpaid]
	The number of coins which failed to be paid out i
	As soon as a dispense hopper coins command is rec
	[payout coins remaining] \(‘N coins’ / decrem
	[last payout : coins paid] (Cleared to ZERO / increments as each coin is paid out
	[last payout : coins unpaid] (Cleared to ZERO
	When payout is completed \(success or abort \�
	[payout coins remaining] (Cleared to ZERO
	[last payout : coins paid] (Correct value for last operation
	[last payout : coins unpaid] (Correct value for last operation
	Host software should always wait for [payout coins remaining] to reach zero before deciding what to do next.
	Request hopper status : Coding Recommendations
	Using life test results, Money Controls can now m
	Polling the hopper status after a ‘Dispense hoppe
	Header 165: Modify variable set
	Transmitted data :[current limit] [motor stop delay]
	[payout timeout] [single coin mode]
	Received data :ACK
	Refer to ‘Request variable set’ for more details
	[single coin mode]
	0 - set multi-coin payout mode (default)
	1 - set single coin payout mode
	(any other value is treated as multi-coin payout mode)
	For security reasons, once a hopper is set to single coin payout mode it cannot be changed back to multi-coin payout mode with this command. A power-down or hardware / software reset is required.
	This command allows some of the motor control variables to be modified but does not necessarily have to be sent before using the hopper. The default values listed in Appendix A are normally optimal.
	Variable set changes are volatile. Any custom values are lost at power-down or reset.
	Software Design Note: Future products may see some additional information sent by this command. To ensure backwards compatibility, the existing data packet will be retained (in both order and type) and any additional information tagged to the end. If
	Header 164: Enable hopper
	Transmitted data :[enable code]
	Received data :ACK
	[enable code]
	165 - enable hopper payout
	not 165 - disable hopper payout
	The hopper must be enabled before coins can be paid out. Only the decimal value 165 (A5 hex, 10100101 binary) enables it, all other values disable it.
	If a hopper is disabled prior to a ‘Dispense hopp
	A ‘Reset device’ command or a power-down cycle wi
	This command is retained for compatibility with SCH1 rather than its negligible effect on security.
	Header 163: Test hopper
	Transmitted data :<none>
	Received data :[hopper status register]
	This command reports back various operating and e
	[hopper status register 1]
	Bit mask :
	B0 - Absolute maximum current exceeded1 = exceeded
	B1 - Payout timeout occurred1 = occurred
	B2 - Motor reversed during last payout to clear a jam1 = reversed
	B3 - Opto fraud attempt, path blocked during idle1 = fraud
	B4 - Opto fraud attempt, short-circuit during idle1 = fraud
	B5 - Opto blocked permanently during payout1 = blocked
	B6 - Power-up detected1 = power-up
	B7 - Payout disabled1 = disabled
	The ‘Payout timeout occurred’ flag is cleared pri
	Once it has been set, the ‘Motor reversed during
	[hopper status register 2]
	Bit mask :
	B0 - Opto fraud attempt, short-circuit during payout1 = fraud
	B1 - Single coin payout mode1 = single
	B2 - Checksum A error1 = error
	B3 - Checksum B error1 = error
	B4 - Checksum C error1 = error
	B5 - Checksum D error1 = error
	B6 - Power fail during NV Memory write1 = fail
	B7 - PIN number mechanism1 = enabled
	‘Opto fraud attempt, short-circuit during payout’
	Refer to Appendix D for details of the checksum types.
	Table 4: Flag Action Table:.
	Short Label
	Dispense coins requirement ?
	Action on Power-Up or
	Hardware Reset
	Action on Software Reset
	Max. Curr.
	Yes
	Cleared
	Cleared
	Timeout
	-
	Cleared
	Cleared
	Reverse
	-
	Cleared
	Cleared
	Idle block
	Yes
	Cleared
	Cleared
	Idle s/c
	Yes
	Cleared
	Cleared
	Block
	Yes
	Cleared
	Cleared
	Power-up
	-
	Set on PU only
	Cleared
	Disabled
	Yes
	Set
	Set
	Pay s/c
	Yes
	Cleared
	Cleared
	Single
	-
	Cleared
	Cleared
	Check A
	-
	Calculated
	Calculated
	Check B
	-
	Calculated
	Calculated
	Check C
	-
	Calculated
	Calculated
	Check D
	-
	Calculated
	Calculated
	NV Fail
	-
	‘NV Memory’
	‘NV Memory’
	PIN
	-
	‘NV Memory’
	‘NV Memory’
	Header 161: Pump RNG
	Transmitted data :[random 1] [random 2] [random 3] [random 4]
	[random 5] [random 6] [random 7] [random 8]
	Received data :ACK
	This command pumps the random number generator of the hopper with extra random variables to make prediction of the next random number in the sequence a lot harder. Its use is optional but recommended where security is paramount.
	Header 160: Request cipher key
	Transmitted data :<none>
	Received data :[key 1] [key 2] [key 3] [key 4]
	[key 5] [key 6] [key 7] [key 8]
	This command requests the encryption key required
	‘Dispense hopper coins’ command
	‘Pump RNG’ command
	Power-down or any type of reset
	Header 004: Request comms revision
	Transmitted data :<none>
	Received data :[ccTalk level] [major revision] [minor revision]
	[ccTalk level] = 1
	[major revision] = 3
	[minor revision] = 2
	In other words, the first issue level of ccTalk specification 3.2
	Header 003: Clear comms status variables
	Transmitted data :<none>
	Received data :ACK
	Clears the counters returned by the ‘Request comm
	Header 002: Request comms status variables
	Transmitted data :<none>
	Received data :[rx timeouts] [rx bytes ignored] [rx bad checksums]
	[rx timeouts]
	Number of receive message timeouts recorded by the processor.
	There is an inter-byte timeout value of Trxout - see Appendix B. The ccTalk protocol has a variable length packet structure but data timeouts can be detected and counted.
	[rx bytes ignored]
	Number of receive bytes ignored by the processor (due to receive buffer overflow).
	SUH has a receive buffer length of 15 bytes for the data part of the packet - the header and checksum are stored elsewhere. Packets with more than 15 bytes of data increase the ignored counter by the total number of data bytes. So sending a message with
	[rx bad checksums]
	Number of messages received by the processor with bad checksums.
	All these counters are cumulative and wrap around to 0 after 255.
	When testing a new software driver, it is worth checking these counters after a series of message transactions to confirm all is well.
	Header 001: Reset device
	Transmitted data :<none>
	Received data :ACK
	This is the command required for a ‘software rese
	An ACK is returned prior to resetting.
	Host software should allow a delay after the ACK before sending the next command to allow the hopper initialisation code to complete - see TSinit in Appendix B.
	After a ‘Reset device’ command, various status fl
	Any motor parameters sent with a ‘Modify variable
	Power Distribution on a Multi-Drop Bus
	The multi-drop bus for Serial Universal Hoppers consists of a power, ground and serial data line. When more than one hopper is attached to the bus, all power is transferred along a single cable and significant ground potential rises can occur.
	The following recommendations are made…
	Only operate one serial hopper at a time. Never initiate a second payout sequence when one is already in progress.
	Consider the use of signal conditioning on the serial data line receiver. Perhaps a high-frequency filter and voltage comparitor input with a mid-rail (2.5V) threshold.
	Consider running separate power cables to the hoppers to alleviate the ground potential problem.
	If communication errors still occur, consider changing the topology of the multi-drop bus network. A star network will distribute power more evenly than a ring, tree or daisy-chain network.
	Electrical Noise - Physical Measures
	The ccTalk protocol is not designed for long distance transfer but for local hook-up of various peripherals within a machine cabinet. Typical cable lengths are likely to be of the order of a few metres.
	Various measures can be taken to minimise the effects of radiated and conducted noise on the ccTalk bus.
	Use a good quality regulated power supply with mains filtering. The power rating should be sufficient to handle a Serial Universal Hopper at maximum surge current.
	Do not run the multi-drop bus cables directly nex
	Keep cable runs as short as possible.
	Make sure the ccTalk data line has an appropriate load resistor at the host end (typically 1K to 10K pull-up to +5V).
	Do not place too many peripherals on the bus - consider the loading effects of each ccTalk interface circuit. The maximum number allowed will depend on the host transceiver circuit.
	Electrical Noise - Software Measures
	There is a big difference in security and reliability terms between a good software implementation of ccTalk and that of a poor one.
	The following design points should be noted caref
	Check each ccTalk reply packet for errors.
	Was there a low level byte framing error ?
	Were there the correct number of data bytes in the message ?
	Was the return destination address correct ?
	Was the checksum correct ?
	Was the peripheral source address the one expected ?
	Was the return header zero ?
	If a reply is returned with an error then the ccTalk command can be re-transmitted as many times as deemed appropriate - this is a key feature of ccTalk.
	Note that the [rx bad checksums] byte returned
	Electrical Specification
	24 volt motor version
	Table 5: Electrical Specification
	Electrical Specification
	Value
	Supply Voltage
	+19 to 26V
	Typical Operating Current/No Load
	300mA typical
	Typical Operating Current/Max Load
	700mA typical
	Surge Current/Start Up and Reverse
	2.5A peak
	Coin Payout:

	Table 6: Coin Payout Rate
	Mode
	Rate
	Multi coin payout
	3 - 5 coins per second approx
	Single coin payout
	1.5 coins per second approx
	The much slower single-coin payout mode is due mainly to the overheads of encryption.
	Environmental:

	Table 7: Environmental Ranges
	Environment
	Value
	Operating Temperature
	0 to 600 C
	Storage Temperature
	-20 to 700 C
	Operating Humidity
	10 to 75% RH
	Storage Humidity
	10 to 95% RH non condensing
	Maintenance Schedule
	Table 8: Maintenance Schedule
	Maintenance Schedule
	Every 100,000 coins
	Clean the light guide using a mild detergent on a damp cloth. No spray solvents should be used.
	Expected product lifetime:
	3 million coins with routine maintenance
	Fault Finding and Repair
	Table 9: Fault Finding and repair.
	Problem:
	Check:
	Cure:
	Coins fail to unjam:
	Ensure coin exit is clear.
	Remove blockage from coin exit.
	Ensure correct coins in hopper.
	Fill hopper with correct coins.
	Ensure no badly bent coins in hopper.
	Remove bent coin/s.
	Motor fails to run:
	Supply fuse.
	Replace fuse.
	Protection device tripped.
	Wait 30 seconds with supply OFF.
	Hopper has detected an opto fault.
	Check EEPROM flags.
	Over payout of coins:
	Check opto area/coin exit area for dirt.
	Clean opto/coin exit area.
	Under Payout Of Coins:
	Check opto area/coin exit area for dirt.
	Clean opto/coin exit area.
	Ensure hopper contains sufficient coins.
	Refill hopper.
	Appendix A
	Conversion Equations & Default Values

	Table 10: Conversion Equations & Default Values:.
	Label
	Scaling & Units
	Default Byte Value
	Default Physical Value
	CURLMT
	N / 17.1 Amps
	20
	1.2A
	STOPDLY
	N ms
	0
	0ms
	PAYTIM
	N * 0.333 s
	30
	10s
	SUPVOLTS
	0.2 + N * 0.127 Volts
	188
	24V
	Limits

	The value of CURLMT cannot be set lower than 6 (which corresponds to 0.35A) otherwise the unit will not operate properly. If a value smaller than 6 is specified, the original value is retained.
	The value of STOPDLY cannot be set greater than 50 (50ms) for security reasons. If a value larger than 50 is specified, the value is clamped at 50.
	Software Reset

	A software reset will force the motor parameters to return to their default values, regardless of their current state.
	Appendix B
	Timing Parameters

	Table 11: Timing Parameters:.
	Nominal values are shown.
	Label
	Description
	Value
	Units
	Xtal
	PIC Resonator
	4.0
	MHz
	Brate
	Serial communication baud rate
	9600
	baud
	Trxout
	Receive data timeout
	25
	ms
	Vtrip
	Power-fail trip threshold (+24V motor)
	16
	V
	TPinit
	Power-up initialisation time
	600
	ms
	TSinit
	Software reset initialisation time
	< 40
	ms
	TMreverse
	Motor reversing time
	150
	ms
	TEESave
	EEPROM data save time
	17
	ms
	Ifuse
	Absolute maximum trip current
	5
	A
	Tlevdeb
	Level sensor debounce time
	2
	s
	Comms reply delay : Simple poll
	< 2
	ms
	Comms reply delay : Enter PIN number (correct)
	< 2
	ms
	Comms reply delay : Enter PIN number (wrong)
	235
	ms
	Comms reply delay : Write data block
	8
	ms
	Comms reply delay : Dispense hopper coins
	< 4
	ms
	Comms reply delay : Request hopper status
	< 2
	ms
	Comms reply delay : Pump RNG
	< 2
	ms
	Comms reply delay : Request cipher key
	< 2
	ms
	Opto Security Timing

	When idle, the hopper software tests the optos on a pseudo-random basis to make a deliberate fraud attempt much harder. The sampling period varies between 15 and 255 milliseconds. When paying out coins, the sampling period changes to between 64 and 127 m
	Hopper Initialisation

	No serial communication is possible during the ‘T
	Appendix C
	ccTalk Interface Circuit

	This is the ccTalk electronic interface circuit on SUH.
	There are many options for the host interface circuit but we recommend an open-collector drive.
	Figure 3: ccTalk Interface Circuit:
	Appendix D
	NV Memory Map Description

	Table 12: NV Memory Map Description:.
	Block No.
	Length Bytes
	Description
	Read / Write Permission
	0
	8
	User data
	R / W
	1
	6
	Coin name
	R / W
	1
	2
	User data
	R / W
	2
	3
	Hopper dispense count
	R / W
	2
	1
	Checksum A
	R / W
	2
	1
	Last payout : coins paid
	R / W
	2
	1
	Checksum B
	R / W
	2
	1
	Last payout : coins unpaid
	R / W
	2
	1
	Checksum C
	R / W
	3
	3
	Hopper life dispense count
	Read Only
	3
	1
	Checksum D
	Read Only
	3
	1
	Black Box Recorder A
	Read Only
	3
	1
	Black Box Recorder B
	Read Only
	3
	1
	Black Box Recorder C
	Read Only
	3
	1
	Black Box Recorder D
	Read Only
	User data
	10 bytes of user data are available to the host machine for any kind of storage requirement. The data can be ASCII test or binary data - there is no restriction on format. All 8 bytes of block 0 are available, together with the top 2 bytes of block 1.
	Coin name
	The name of the hopper coin, if programmed. Users
	Hopper dispense count
	The total no. of coins dispensed since the counter was reset.
	Note that the ccTalk command ‘Request hopper disp
	Last payout : coins paid
	The no. of coins dispensed by the last command.
	Continued…
	Last payout : coins unpaid
	The no. of coins which failed to be dispensed by the last command.
	Hopper life dispense count
	The total no. of coins dispensed since the product was manufactured.
	Note that the life dispense count is only updated
	Checksums and Black Box Recorders
	Each counter is protected by a null checksum such that the 8-bit addition of all counter bytes and the checksum byte is zero.
	If the software detects a checksum fail then the
	Example - Clearing the Hopper dispense count
	This can be achieved by reading block 2 and writing it back with the appropriate bytes cleared to zero.
	Complete message packets shown. Data values in decimal. Hopper is address 3.
	Read Cycle
	TX :[3] [1] [1] [215] [2] [checksum] - Read block 2
	RX :[1] [8] [3] [0] [count 1] [count 2] [count 3] [count checksum]
	[data 1] [data 2] [data 3] [data 4] [checksum]
	Write Cycle
	TX :[3] [9] [1] [214] [2] [0] [0] [0] [0] - Write block 2
	[data 1] [data 2] [data 3] [data 4] [checksum]
	RX :[1] [0] [3] [0] [252] - ACK
	Appendix E
	Request Hopper Status Examples
	The reply from the ‘Request hopper status’ comman
	[event counter] [payout coins remaining] [last payout : coins paid] [last payout : coins unpaid]
	Dispense 1 coin in single coin mode
	Hopper status = 01 01 00 00
	Hopper status = 01 01 00 00
	Hopper status = 01 01 00 00
	Hopper status = 01 00 01 00 Paid 1 coin
	Dispense 5 coins in multi-coin mode
	Hopper status = 02 05 00 00
	Hopper status = 02 05 00 00
	Hopper status = 02 04 01 00
	Hopper status = 02 04 01 00
	Hopper status = 02 03 02 00
	Hopper status = 02 03 02 00
	Hopper status = 02 02 03 00
	Hopper status = 02 02 03 00
	Hopper status = 02 01 04 00
	Hopper status = 02 01 04 00
	Hopper status = 02 00 05 00 Paid 5 coins
	Dispense 5 coins in multi-coin mode. Only 2 coins in hopper
	Hopper status = 03 05 00 00
	Hopper status = 03 04 01 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 03 02 00
	Hopper status = 03 01 01 03 Partial result - ignore
	Hopper status = 03 00 02 03 Paid 2 coins, 3 remaining
	This manual is intended only to assist the reader in the use of this product and therefore Money Controls shall not be liable for any loss or damage whatsoever arising form the use of any information or particulars in, or any incorrect use of the product

