
ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

This document is the copyright of Money Controls Ltd and may not be reproduced in part or in total by any means,
electronic or otherwise, without the written permission of Money Controls Ltd. Money Controls Ltd does not accept
liability for any errors or omissions contained within this document. Money Controls Ltd shall not incur any
penalties arising out of the adherence to, interpretation of, or reliance on, this standard. Money Controls Ltd will
provide full support for this product when used as described within this document. Use in applications not covered
or outside the scope of this document may not be supported. Money Controls Ltd. reserves the right to amend,
improve or change the product referred to within this document or the document itself at any time.

©Money Controls 2004. All rights reserved.

Last updated 01/12/02

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 2 of 20

Your questions have been answered by the ccTalk® system architect, Andy Barson.

1. Diary of changes.. 3
2. General Questions... 4

2.1 Where does the name ‘ccTalk’ come from ?.. 4
2.2 Which is correct - ‘cctalk’ or ‘ccTalk’ ? ... 4
2.3 Does the name ccTalk refer to hardware, software or a written specification ? 4
2.4 What is ccTalk and who uses it ?... 4
2.5 Where do I get information on ccTalk ? ... 4
2.6 Who is the controlling authority for ccTalk ? .. 4
2.7 Do I have to pay any fees to use it ?.. 4
2.8 How many wires are needed on ccTalk ? .. 4
2.9 What peripherals are covered by ccTalk ?... 5
2.10 Why are the ccTalk command headers not in a sensible order ? .. 5
2.11 What software support can you provide ?.. 5
2.12 I’ve heard about ccTalk encryption. What is it and when is it used ?... 5
2.13 Can ccTalk run at anything other than 9600 baud ? .. 5
2.14 Has anybody written a ccTalk protocol analyser ?... 5
2.15 How many peripherals can be supported on a ccTalk bus ? ... 6
2.16 What is the expected ccTalk data line voltage ?.. 6
2.17 How ‘noise-immune’ is ccTalk ? .. 6
2.18 Can I run ccTalk over USB ? ... 6
2.19 Is there a ccTalk test house or approval facility ? .. 6
2.20 When was ccTalk ‘invented’ ? ... 7
2.21 Is there a web site for ccTalk ? .. 7
2.22 What kind of timing problems can I get with ccTalk ? .. 7
2.23 My ccTalk software doesn’t work. What should I do ? ... 7
2.24 How do I go about obtaining ccTalk encryption documents ?.. 8
2.25 How does ccTalk perform error correction and retries ? .. 8
2.26 My 8-bit checksum is wrong. Why ? ... 8
2.27 My CRC checksum is wrong. Why ?.. 9
2.28 What is the longest ccTalk message size ? ... 9
2.29 How do I know when a new ccTalk message begins ?.. 10
2.30 How do I know which version of ccTalk to use ? ... 10
2.31 Other serial protocols seem more sophisticated. Why is this ?.. 10
2.32 Is there a user group for ccTalk ? .. 10
2.33 Do I send decimal, hexadecimal or ASCII values in ccTalk ? .. 11
2.34 Why are there so many approved ccTalk connector types ? ... 11
2.35 I don’t understand MDCES commands. Can you explain ? ... 12

3. Host Machine Manufacturer Questions ... 13
3.1 How do I connect a PC to a ccTalk peripheral ?.. 13
3.2 Is there a standard ccTalk ‘driver’ I can use ? ... 13
3.3 Is it possible to have 2 ccTalk masters on the same bus ?.. 13
3.4 Why is the original PNP ccTalk interface circuit now obsolete ?.. 13
3.5 If I use the broadcast address, all the responses clash. So why use it ? ... 13
3.6 Can I run a ccTalk serial cable between machines ?... 13
3.7 I use Linux. Is that a problem ?.. 14
3.8 My company doesn’t have electronic engineering resource. How do I use ccTalk ? 14
3.9 My company does not have software engineering resource. How do I use ccTalk ?............................. 14
3.10 How do I know what coins and bills are available to me in a peripheral ? ... 14
3.11 I have local echo. Is that correct ? .. 14

4. Peripheral Manufacturer Questions... 16
4.1 What is the minimum hardware I need to run ccTalk ? .. 16
4.2 How do I create a ccTalk product ? ... 16
4.3 I want to add some ‘secret’ ccTalk commands. How do I do it ? ... 16
4.4 How do I report multiple fault codes ?.. 16
4.5 Can I implement ccTalk on a Microchip PIC microcontroller ?... 16
4.6 Is there a ccTalk logo I can use on my products ?... 16
4.7 How does polling work with a fast coin acceptor in gaming ? .. 17
4.8 Does ccTalk support remote download of coins and bills ? ... 17
4.9 What power can I source over a ccTalk serial bus ?.. 18
4.10 How do I register our company name ? ... 18
4.11 I haven’t got time to respond on ccTalk. How do I solve this problem ? .. 19

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 3 of 20

1. Diary of changes

Issue 1.0………………………………………………………….…………………….………..Aug 2002
 1st Issue

Issue 1.1…………………………………………………………………………………………Dec 2002
 Added section 3.12

Issue 1.2………………………………………………………………………………………June 2004
 Changed footer

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 4 of 20

2. General Questions

2.1 Where does the name ‘ccTalk’ come from ?
The protocol was developed at Coin Controls before the company changed its name to
Money Controls. Hence Coin-Controls-Talk.

2.2 Which is correct - ‘cctalk’ or ‘ccTalk’ ?
The name ‘ccTalk’ is the brand name and should be used by all manufacturers on labels and
in technical manuals. The original specification was created by the author as lower case
‘cctalk’ to contrast with all the upper case protocols around at the time. Most of the
specification documentation refers to ‘cctalk’.

2.3 Does the name ccTalk refer to hardware, software or a written
specification ?
All three. In essence the protocol as laid down by the written specification.

2.4 What is ccTalk and who uses it ?
ccTalk is a serial protocol for use in the Money Processing Industry. It can be viewed as a
low speed, control network with a wealth of features covering all aspects of secure credit
transfer, status reporting, fault reporting and host control across a wide range of industry-
standard peripherals. It is used throughout the world in sectors such as amusement, video,
gaming, transportation, vending, telecommunications and retail.

2.5 Where do I get information on ccTalk ?
The most important document is the ‘ccTalk Serial Communication Protocol - Generic
Specification’ which explains how the protocol works and the history behind it. More detailed
information can be found in product manuals for each ccTalk peripheral. The latest copy of
the generic specification can be obtained directly from Money Controls or via the ccTalk web
site at www.cctalk.org.

2.6 Who is the controlling authority for ccTalk ?
It is currently with Money Controls who originated the specification but this is subject to
review. Please send any comments you have on the specification or suggestions for
improvements or extensions to abarson@moneycontrols.com

2.7 Do I have to pay any fees to use it ?
No. The ccTalk protocol is ‘gifted’ to the industry and does not require a license fee or
royalties to be paid. There are no restrictions on use.

2.8 How many wires are needed on ccTalk ?
A standard ccTalk serial bus only requires 3 wires. There is a supply voltage line, a common
0V line and a bi-directional data line. Some applications require additional power supply
voltages and / or control signals and address lines.

http://www.cctalk.org/
mailto:abarson@moneycontrols.com

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 5 of 20

2.9 What peripherals are covered by ccTalk ?
The specification covers coin acceptors, bill validators and payout devices such as hoppers.
There are plans to expand the command set to card payments and ticket printers.

2.10 Why are the ccTalk command headers not in a sensible order ?
Hindsight is a wonderful thing ! The ccTalk headers were created from 255 downwards and
as needs arose. They are roughly in the order coin acceptors, hoppers and bill validators but
with some turbulence. Ask any software engineer and she doesn’t care - they are typed into
an include file or global module and then forgotten about. We tend to remember names
much better than numbers.

2.11 What software support can you provide ?
Money Controls is primarily a hardware manufacturer and does not provide a suite of tools
for software development. We can provide specification documents and coding examples but
we do not supply software libraries, DLL’s, OCX’s, API’s etc. It is up to each manufacturer to
write their own ccTalk software. Is ccTalk the same as RS232 ?

This is a ‘yes’ and ‘no’ answer. The underlying protocol is the same as RS232 in terms of the
asynchronous transfer of characters with start and stop bit timing frames. However, two
changes have been made to reduce the cost of implementation on embedded peripherals.
The transmit and receive lines on RS232 have been combined into a single bi-directional
data line and the mark / space voltages of ±12V have been changed to 0V / +5V.

2.12 I’ve heard about ccTalk encryption. What is it and when is it used ?
The original ccTalk protocol did not use any kind of encryption. It was thought that the
security in a serial interface was so much better than a parallel one that no further steps
were necessary. However, a perceived threat was seen in the ability to empty a full hopper
bowl of coins with a simple connection to the multi-drop bus, as well as the ability to clone
high value credit packets on a bill validator. Therefore various levels of encryption were
added seamlessly to the ccTalk protocol. Hoppers use a security key to unlock the dispense
command and bill validators only operate in secure ccTalk mode with encryption on every
command.

2.13 Can ccTalk run at anything other than 9600 baud ?
The standard ccTalk baud rate is 9600 and it is recommended that all peripheral devices use
this speed. The cost of supporting higher baud rates on small embedded devices can be
prohibitive. The operation of ccTalk at the packet formatting level is unaffected by the baud
rate and so the generic specification indicates that 4800 and 19,200 in certain applications
would be an option. The mixing of baud rates on a multi-drop bus is not acceptable however
as it would result in too many errors.

2.14 Has anybody written a ccTalk protocol analyser ?
Money Controls has a basic software package. It is a simple comms monitoring application
which runs on a PC under Windows and decodes all data appearing on the RX pin of the
RS232 connector according to ccTalk rules. It is available on request but supplied ‘as is’ -
without instructions or warranty.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 6 of 20

2.15 How many peripherals can be supported on a ccTalk bus ?
This is an ‘it depends’ type answer. The address field of ccTalk is 1 byte in size. The value of
0 is reserved as a ‘broadcast’ address. The value of 1 is the default source address of the
host machine. So that leaves a theoretical possibility of connecting 254 slave devices. In
practice we cannot get anywhere near this figure for two reasons - bandwidth and electrical
loading. If all the peripherals require polling every 1 second then the time slot available for
each peripheral would be 3.9ms. This is not long enough for a typical ccTalk message to
complete. If the peripherals only require polling when a certain action is being performed (
e.g. dispensing coins from a hopper) then this limitation could potentially be removed.
Electrical loading is the result of each ccTalk peripheral lowering the impedance of the
ccTalk data line. The extent to which this is done depends on the exact interface electronics
used, but with a typical configuration it is possible to connect 10 to 20 devices.

2.16 What is the expected ccTalk data line voltage ?
The idle state of the ccTalk data line is nominally +5V but will be slightly less than this due to
electrical loading. Anything between 4V and 5V should be treated as a ‘high’ by the interface
electronics. Anything below 1V should be treated as a ‘low’. Some early ccTalk products
from Money Controls had the data line voltage pulled up to the supply voltage of +12V or
+24V but this is now discouraged.

2.17 How ‘noise-immune’ is ccTalk ?
How long is a piece of string ? The question can be looked at in terms of electronics and
software. On the electronics side, the ccTalk data line is driven by an open-collector
transistor onto a low-voltage wire with a weak pull-up resistor. So compared to RS485 which
uses differential current drivers and a balanced line, we have a susceptible system. In terms
of software however, there are safeguards such as CRC checksums and infinite retries
which allow any burst of electrical noise to only temporarily disrupt serial communications. In
that sense ccTalk is a ‘resilient’ protocol, even if response times cannot be guaranteed in
noisy environments. However, the criticality of any single-shot process such as a bill credit
event has been removed in the upper layers of the protocol through event buffering.

In short it is recommended that ccTalk is used for ‘in-machine’ hook-up of peripheral devices
where the total length of the ccTalk data wire is less than 10m. For connection between
machines and between sites another physical layer should be used such as RS485,
Ethernet, modem etc. In principal there is no reason why ccTalk cannot be run over these
other layers without change as there are very few timing requirements above those of the
command and response loop delay.

2.18 Can I run ccTalk over USB ?
The simple answer is yes. If you know about the different ‘classes’ that are available on USB
then you may have heard about the CDC or ‘COM class’. This refers to the software required
to convert a high-speed data link provided by the USB hardware into a RS232 emulation. So
using a COM class converter, ccTalk can be run over USB ‘transparently’ - as if the USB
pipe was not there. The speed advantages of USB would not be apparent however as there
would be a 9600 baud bottleneck on existing peripherals.

2.19 Is there a ccTalk test house or approval facility ?
Not at this point in time.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 7 of 20

2.20 When was ccTalk ‘invented’ ?
We prefer to say that ccTalk ‘evolved’ from earlier protocols and after much consultation
within the industry, rather than magically appear on a particular date. The earliest ccTalk
labelled specification was generated in 1996.

2.21 Is there a web site for ccTalk ?
Yes - visit www.cctalk.org

2.22 What kind of timing problems can I get with ccTalk ?
The timing of ccTalk essentially boils down to firing a command packet to the peripheral and
waiting for a reply to come back. Within each packet there is an expected maximum delay
between bytes. So subject to these two ‘timeout’ conditions, no other timing problems should
arise, unless specifically documented with the peripheral.

A typical transfer would see the host machine send a message to the peripheral. If no
response is obtained within 1 second (this could be much shorter depending on the
command) the host could try again. When the reply is being received, any gap of more than
50ms between received bytes would force a reset of the receive pointer. In other words, it
would cause the current message packet to be abandoned and a new one started with the
‘destination address’ assumed to be next.

Commands on a multi-drop bus can be sent ‘nose to tail’. In other words as soon as the host
receives the complete return packet from peripheral A, it can send the next command to
peripheral B with zero delay between. So the start bit of the peripheral A destination address
can come immediately after the peripheral B checksum stop bit. In practice there will
probably be a delay of a few milliseconds.

2.23 My ccTalk software doesn’t work. What should I do ?
The reasons could be many and varied so it is best to start with the simplest possible ccTalk
command and work up from there. The ccTalk header 254 is a ‘Simple poll’. The peripheral
replies with an ACK and all ccTalk peripherals must support it.

For a peripheral on address 2 and assuming 8-bit checksum and no encryption…

Host sends [2] [0] [1] [254] [255]
Slave returns [1] [0] [2] [0] [253]

The values between brackets are bytes with the decimal value shown.

If there is no response from the slave then check the following…

 Is there power on the ccTalk +Vs line ?
 Is the peripheral operating in serial mode ? There could be a DIL switch or

connector pin option.
 Is the ccTalk data line high in idle ?
 Does the ccTalk data line go low during message transmit ?
 Is each low bit about 1ms (9600 baud value) ?
 Are the signal transitions fast and clean ? Check with an oscilloscope.
 Does the peripheral use CRC checksums and encryption ? If so the above

example will not work !

http://www.cctalk.org/

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 8 of 20

2.24 How do I go about obtaining ccTalk encryption documents ?
The encryption documents are sensitive and will not be made available in the public domain.
If you require the documents for serial hoppers or bill validators then contact Money Controls
and we will send out the necessary paperwork for signing prior to you being sent a copy by
post. The use of email to circulate these documents is strictly prohibited.

2.25 How does ccTalk perform error correction and retries ?
There is nothing in the transport layer of ccTalk to assist in the automatic retry of messages
with bad checksums - this has been left entirely to the discretion of the application layer. This
has advantages in that the host software can be made as simple or as complicated as the
application requires. The host can retry once, 3 times, 10 times, for 1 second, for 10 seconds
etc. It can even have infinite retry.

The conditions for message retry are based on the following conditions…

 No response is received from the slave (the standard ccTalk error condition)
 A NAK message is received from the slave
 There is a low-level RS232 framing error (stop bit invalid)
 There is a data underrun or overrun based on the length field
 The message is received with a bad checksum
 The message is received with an incorrect address or header field

The ccTalk commands are structured such that infinite retry can be attempted without
penalty. Rather than the ‘toggle bits’ that some protocols use to distinguish between an
original message and a retry message, ccTalk uses a full-byte event counter to prevent
single-shot events from being re-issued or mis-counted. Only a few commands are subject to
the software overhead of an event counter - the rest do not need it and do not have it.

2.26 My 8-bit checksum is wrong. Why ?
If you send a message to a ccTalk peripheral with an incorrect checksum then it will not
reply.

The 8-bit checksum is calculated by adding up all the message bytes from the destination
address to the last data byte and finding the value when added to it will produce zero in
modulo 256 arithmetic.

For example, the ccTalk command to enable all coin inhibits is…

[2] [2] [1] [231] [255] [255] [checksum]

2 + 2 + 1 + 231 + 255 + 255 = 746 = 234 modulo 256 (256 x 2 + 234).

Checksum = 256 - 234 = 22

Therefore the complete message is

[2] [2] [1] [231] [255] [255] [22]

2 + 2 + 1 + 231 + 255 + 255 + 22 = 768 = ZERO modulo 256.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 9 of 20

2.27 My CRC checksum is wrong. Why ?
If you send a message to a ccTalk peripheral with an incorrect checksum then it will not
reply.

A 16-bit CRC may used in ccTalk, positioned in the message packet as follows…

[Dest. Addr.] [Size] [CRC-16 LSB] [Header] [Data 1]… [Data N] [CRC-16 MSB]

It can be seen that the ‘Source Addr.’ field of ccTalk has been replaced by the lower half of
the 16-bit checksum. This is possible because the source address is redundant in a single-
master system. It is advantageous to keep message lengths the same so that CRC and non-
CRC protocols can be mixed on the same bus.

The CRC algorithm has a number of options and you need to have them exactly right for it to
work in all cases.

The ccTalk protocol uses the following parameters…

 CRC-CCITT
 Polynomial = x^16 + x^12 + x^5 + 1
 Initial crc register = 0x0000

The algorithm in ‘C’ is included in the appendix of the generic specification. It is necessary to
have some programming experience as calculating it by hand is no fun.

A simple poll would have the following CRC data…

TX : [40] [0] [a] [254] [b]

a = 182 b = 33

RX : [1] [0] [a] [0] [b]

a = 48 b = 55

2.28 What is the longest ccTalk message size ?
The 2nd byte of a ccTalk message is the ‘no. of data bytes’. This is not the total size of the
message packet but the size of the data payload only. A message with no data bytes would
still be 5 bytes in size. It would be possible to have 255 data bytes such that the maximum
packet size is 260 bytes.

The maximum recommended ccTalk data size is 252 bytes such than 255 bytes follow the
size byte, giving a maximum packet size of 257 bytes. This allows a 8-bit receive pointer to
be used when storing message data - handy in microcontroller applications with very little
RAM.

The maximum likely ccTalk data size is a little over 128 bytes. This is often used when
splitting up large blocks of data into ccTalk message packets. Sending a block number or
address along with 128 bytes of data is a nice binary number for filling flash memory etc.

It is not always necessary to store the entire ccTalk data message before processing it. The
message can be received and ‘thrown away’ or handled ‘on-the-fly’.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 10 of 20

2.29 How do I know when a new ccTalk message begins ?
This problem has to be dealt with by all ccTalk nodes. In a stream of data bytes how do you
know when one message ends and another begins ? The answer is by byte counting. Every
ccTalk message consists of an address byte followed by a size byte. After the size byte
another ‘3 + size’ bytes follow before the next message begins. Every ccTalk node must
receive and count all bytes, even if the message is not addressed to them. Fortunately, the
processing resource to do this is very small and it can be done as a ‘background task’.
Another problem arises where the start of a ccTalk message is unknown or incorrect in the
first place - the problem of message re-synchronisation. To solve this ccTalk relies on the
use of a ‘data timeout’. Since gaps between messages will be far higher than the gaps
between bytes in a ccTalk message packet, this longer time can be used to reset the receive
pointers and re-synchronise the address byte detection. If there is a gap of more than 50ms
between incoming bytes, it can be assumed a new message is starting. This process is also
essential in dealing with electrical noise which could disrupt the incoming byte stream and
force a bad checksum.

2.30 How do I know which version of ccTalk to use ?
At this moment in time there is really only one version of the ccTalk specification. There are
various options such as encryption on bill validators but these are now well established.
Future revisions of the specification have been broadly compatible with older revisions and
no issues have so far arisen. If a peripheral doesn’t support a particular ccTalk command
then there is no response and alternative commands or actions can be taken by the host
machine.

The version of ccTalk that a peripheral supports can be requested with command header 4.
Three bytes are returned. The first byte is the level and the second 2 bytes refer to the
ccTalk generic specification revision. The level is used for minor changes / bug fixes (as
determined by the peripheral manufacturer) and the revision for protocol conformance.

2.31 Other serial protocols seem more sophisticated. Why is this ?
There are various features which have been deliberately left out of ccTalk to simplify the
implementation and to lower the cost. There is no ‘hot plugging’ of ccTalk peripherals. If you
add a ccTalk peripheral to a powered bus then the host machine has no way of knowing this
has been done. Likewise if a ccTalk peripheral is removed from the bus, the next command
to it from the host will fail. The host may decide the peripheral is missing or faulty - it has no
way of knowing. Also, the use of ccTalk is restricted to ‘single master’ applications. If there is
more than one ccTalk master on the bus then message packets will collide and the protocol
becomes very inefficient. The addition of a ‘Busy’ line would help but as virtually all
applications in the Money Processing Industry are single master, and need to be for security
reasons, the protocol has been biased this way accordingly.

2.32 Is there a user group for ccTalk ?
Contact Money Controls for the latest information. An initial UK group was set up in 1999 to
promote ccTalk use throughout the industry.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 11 of 20

2.33 Do I send decimal, hexadecimal or ASCII values in ccTalk ?
This can cause confusion in many serial protocols and is a common source of error. In the
product specifications, any byte values which are sent to the peripheral in an example such
as [0] or [1] means the DECIMAL VALUE, not the ASCII representation of this number. If
the values are in hexadecimal, this will be made clear.

Hexadecimal numbers (hex numbers) when applied to bytes are up to 2 characters long
and may include the characters A to F as well as the digits 0 to 9.

e.g. 12, 5F, AA, 9C and 5 are all hex numbers.

In C they are written as 0x12, 0x5F, 0xAA, 0x9C and 0x05.
In Visual Basic they are written as &H12, &H5F, &HAA, &H9C and &H5.

A value such as 12 is ambiguous because it could be 12 decimal or 12 hexadecimal (= 18
decimal).

An ASCII representation of a number is totally different to the number itself. The ASCII code
for 0 is 48 decimal. The ASCII code for 1 is 49 decimal. They increase in sequence.

ASCII codes are normally enclosed in single or double quotes such as ‘A’ or “A”.

So a byte sequence [‘1’] [‘2’] [‘3’] would be in ASCII.

2.34 Why are there so many approved ccTalk connector types ?
Ideally there would be just a single ccTalk connector type but practical realities have meant
that different connectors have ‘evolved’ to suit different applications over the years. Part of
the standardisation process within ccTalk is to reduce the number of options available.

At the moment coin acceptors and bill validators should use a 10-way, dual row,
mechanically-keyed, 0.1 inch pin header and serial hoppers should use a 10-way, single
row, mechanically-keyed, 0.1inch pin header. There is an option on 3.5inch coin acceptors to
fit the smaller 4-way JST connector where PCB space is severely restricted.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 12 of 20

2.35 I don’t understand MDCES commands. Can you explain ?
MDCES stands for ‘Multi-Drop Command Extension Set’. A special subset of commands
was included in ccTalk to help with address resolution. For most applications the address of
ccTalk peripherals is pre-determined and no issues arise. The coin acceptor is on address 2,
the hopper on address 3 and the bill validator on address 40. But suppose we have 2 coin
acceptors, 4 hoppers and 2 bill validators on the same bus ? They must all have unique
addresses to work. The address of ccTalk peripherals can be stored in RAM or EEPROM to
allow dynamic addressing. The MDCES commands should only be used where the network
configuration is unknown as the commands are slow to execute and randomising addresses
can result in further clashes which then have to be resolved again. As the likelihood of
having more than one hopper connected to a machine bus is very high, hopper addresses
can be changed on the connector wiring harness which avoids the need for address
resolution.

Header 253, Address poll
This command is used with the broadcast address to find out which devices are connected
to the bus. Each peripheral responds with its address delayed by a proportionate time. The
return packet is a single byte, breaking the normal ccTalk packet rules. Devices with the
same address could clash producing spurious addresses.

Header 252, Address clash
This command is used to verify a specific peripheral address. Each peripheral responds with
its address delayed by a random amount of time. Devices with the same address have a
good chance of being resolved.

Header 251, Address change
This command is used to change a peripheral address to the value specified. The next
command to this peripheral should be to the new address.

Header 250, Address random
This command is the solution to any kind of clash problem discovered with the previous
commands. All peripheral addresses are randomised (by sending the broadcast address) in
the hope that they will all become unique. There is a good chance of this happening where
the total number of peripherals is small - usually less than 10.

Peripherals will not randomise their addresses to 0 or 1.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 13 of 20

3. Host Machine Manufacturer Questions

3.1 How do I connect a PC to a ccTalk peripheral ?
A ccTalk device cannot be connected directly to a PC serial port because the single bi-
directional data lines need to be split into TX and RX lines, and the data voltages need to be
changed from TTL to RS232 levels. This can be done with a RS232 converter chip, 2
transistors and a diode. A circuit diagram is provided in the generic specification.

It is possible to manufacture a device which uses the ccTalk protocol but with a RS232
connector fitted for direct connection to a PC.

3.2 Is there a standard ccTalk ‘driver’ I can use ?
Money Controls does not currently issue any software drivers to use on a PC-based
platform. It must be said that the requirement for drivers is minimal as the ability to transmit
and receive bytes through the serial port is fully supported in C and Visual Basic
development environments, and the formation of ccTalk message packets is a relatively
simple task for a software engineer.

3.3 Is it possible to have 2 ccTalk masters on the same bus ?
This is theoretically possible in the base protocol as the source address can be used to
discover which master issued the command. However, multi-master ccTalk systems are
strongly discouraged as the probabilities of message clashes are high and data integrity
cannot be guaranteed. It is possible to add additional hardware to switch masters in and out
of the bus, or to provide a ‘busy’ line, but the remit of this falls outside the published ccTalk
specification. Note that when encryption is used, the source address field is mapped into a
CRC checksum and so this method of determining the master is lost. The master is always
assumed to be address 1.

3.4 Why is the original PNP ccTalk interface circuit now obsolete ?
An early ccTalk interface circuit used a PNP transistor for receiving data, with the base
connected to the ccTalk data line. It soon became apparent that the serial hoppers were
dragging the data line down to 4.5V which was turning on the PNP transistor whilst in idle.
The PNP was therefore replaced by a diode and this has fixed the problem.

3.5 If I use the broadcast address, all the responses clash. So why use it ?
Good question but there is a reason. The broadcast address was originally included in the
protocol to allow the MDCES command, ‘Address poll’, to be sent to all devices
simultaneously. Responses to this command are single bytes and staggered in time so the
chance of a collision is much reduced. Another use is when a single peripheral is connected
to a diagnostic terminal and you are unsure what the address is. By using the broadcast
address you can be sure the peripheral will reply. This turns out to be incredibly useful in
practice.

The host machine can of course ignore all receive bytes from a broadcast command for a
fixed period of time. This works well when the message is an action rather than a request for
data.

3.6 Can I run a ccTalk serial cable between machines ?
This is possible but screened cable would be recommended to reduce noise. The standard
ccTalk interface electronics are only designed for short distance hook-up of peripherals
within a machine rather than between machines.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 14 of 20

3.7 I use Linux. Is that a problem ?
The use of ccTalk is not restricted in any way by the choice of operating system. The only
requirement when developing host software is the ability to control and access a UART.

3.8 My company doesn’t have electronic engineering resource. How do I
use ccTalk ?
For companies developing software on a PC, Money Controls can supply a RS232 to ccTalk
interface box. The only task remaining is to write the application and ccTalk control software.

3.9 My company does not have software engineering resource. How do I
use ccTalk ?
Since ccTalk is a serial protocol, software resource will be required to make it work with your
application. Sub-contracting is probably the only option, although given the nature of the
protocol this should be a relatively simple task.

3.10 How do I know what coins and bills are available to me in a peripheral ?
There are ccTalk commands available which list the coins and bills that can be accepted by
the peripheral. This removes the need for a fixed look-up table.

Header 184, Request coin id

Header 157, Request bill id

The host machine should perform an ‘enumeration’ of coins and bills during the power-up
initialisation routine. For each programmed channel or position within the validator, which
corresponds to the serial credit code returned during polling, the host machine reads out the
associated coin or bill identification string. These are then stored in a ‘RAM table’ which are
available for look-up as credit codes are generated.

3.11 I have local echo. Is that correct ?
The ccTalk protocol uses a bi-directional data line. Any transmitted data will appear on the
data bus and therefore most likely immediately on the receive port of the transmitting device.
This is indeed the case with the standard ccTalk PC interface circuit (see circuit 4 in the
generic specification). The software can disable the receive port while transmitting, or clear
the receive buffer immediately afterwards, but the most elegant solution is to index into the
receive buffer the number of transmitted bytes in order to find the reply packet. So if the
ccTalk master sends a 6 byte message packet it will read the reply packet at byte position 7
since the first 6 bytes will be a straight copy of the transmitted packet. If this is not the case
then it can be assumed there is a catastrophic comms failure.

When the slave device replies, it too will have local echo and will have the host reply packet
in its receive buffer. This will be addressed to the master device with return command
header zero. This message should therefore be ‘ignored’ by the slave firmware - wrong
address.

The existence of local echo is a common occurrence in many communication systems and
can easily be allowed for once you know it is happening.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 15 of 20

3.12 No coins accept.
Set inhibit status command sent, all 1’s (enable all coins), no coins accept. When read
inhibit status command sent, all 0’s returned.

SR5 not actually in serial mode. Either the parallel connector is being used and / or pin 9 on
the serial connector is not grounded.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 16 of 20

4. Peripheral Manufacturer Questions

4.1 What is the minimum hardware I need to run ccTalk ?
ccTalk is one of the simplest asynchronous protocols that it is possible to use. Although it is
multi-drop and supports variable message lengths, there is no 9th address bit or wake-up bit
in the character frame. The need for parity bits has also been removed. Although it is
possible to write a software UART on a microcontroller to support ccTalk, the use of a
hardware UART eliminates many of the potential timing problems that can occur. A typical
microcontroller requirement for ccTalk would be a 8-bit core with a 8/16-bit timer, hardware
UART and 2K ROM. Application code would be additional to this of course. The amount of
RAM depends on whether messages are fully buffered in the transmit and receive paths or
whether they are processed ‘on-the-fly’. Typically anything from a few tens of bytes to a few
hundred bytes of RAM.

4.2 How do I create a ccTalk product ?
Any peripheral manufactured with an interface conforming to the ccTalk generic specification
can be referred to as a ccTalk product. Commands exist to identify the manufacturer,
product name, build code, software revision, ROM checksum, serial number and
manufacturing date. All these fields can be filled in appropriately.

4.3 I want to add some ‘secret’ ccTalk commands. How do I do it ?
Header 255 is the ‘Factory set-up and test’ command and can be used by any manufacturer
for internal functions. No details of these functions need ever be published. If thought
necessary, various security mechanisms can be put in place to protect this command from
unauthorised use. One of the simplest is a PIN number. Although only a single ccTalk
header is defined for this function, the first byte of the data payload can be a sub-header,
massively expanding the command set.

4.4 How do I report multiple fault codes ?
The ccTalk protocol currently only supports priority fault code reporting. The fault code is
returned in response to ccTalk header 232, ‘Perform self-check’. So if fault codes A, B, and
C suddenly develop on a product, which is unfortunate in the extreme, fault code A is
returned until fixed, then B and finally C.

4.5 Can I implement ccTalk on a Microchip PIC microcontroller ?
Yes - even a small PIC microcontroller can be used for a ccTalk peripheral. The Mk 1 serial
hopper from Money Controls used a PIC12C671 for the entire application. This 8 pin device
has 1K(word) ROM, 128 bytes RAM and an internal RC oscillator. 28 ccTalk command
headers were implemented.

4.6 Is there a ccTalk logo I can use on my products ?
Not yet but watch this space.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 17 of 20

4.7 How does polling work with a fast coin acceptor in gaming ?
A coin acceptor for gaming may be capable of accepting 20 coins per second in short bursts.
However, the ccTalk host controller may only be polling the coin acceptor once per second.
So how can we not lose any credit information ? The simple answer is buffering. The ccTalk
command header 229, ‘Read buffered credit or error codes’, can read up to 5 new credits.
So in 4 seconds the host machine can discover all the coins put down in a second. This
relies on peripheral ‘double-buffering’. There is a 10 byte transmit buffer containing credit
events and a much deeper credit stack allowing continuous coin feeding. Eventually the
stack will run out of course and the coin acceptor would have to self-inhibit for a few
seconds.

There are a number of complications to this ideal scenario.

The first is that if 5 new credits are transmitted at each request and some return
communication error means the host has to retry the command, it would lose that credit
information. The event counter would indicate 5 missing credits but no details of those
credits could be obtained. For this reason it is recommended that only 2 new credit events
are added to the transmit buffer at each poll. This allows a single retry to be made without
loss of data. To compensate for this reduction in data transfer it is recommended the coin
acceptor is polled every 200ms. So 10 coin credits can obtained every second, and 20 coins
would be handled in 2 seconds, twice the coin insertion time.

The second is power loss. The disadvantages of a deep stack are that if power is lost then
the entire stack is lost unless it is backed up to non-volatile memory. This is true though of
any serial protocol where the transfer of data is potentially slower than the coin entry speed.
Also, any serial protocol where the transfer of data is slower than the power supply fall time
can lose a single credit. So it is up to the system designer to ensure that vulnerability to
power loss is at a minimum, whether it is through the use of battery-backed RAM and / or
system boards, EEPROM memory or minimum polling requirements.

4.8 Does ccTalk support remote download of coins and bills ?
Yes - support is provided. The bill validator commands are in the public header section while
the coin acceptor commands are currently in the application specific section.

Each peripheral manufacturer will have a very different method of downloading new coin
sets or bill tables into a peripheral and so it is pointless standardising the process beyond a
generic block transfer of data. Variable length data from a few bytes to millions of bytes is
supported. The format of the data has been left to each manufacturer. The ‘begin’ and ‘finish’
commands have been included to allow a convenient method of invoking a FLASH memory
erase and program cycle.

Header 143, Begin bill table upgrade
Header 144, Upload bill tables
Header 142, Finish bill table upgrade

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 18 of 20

4.9 What power can I source over a ccTalk serial bus ?
There is currently no specification for the power available over ccTalk to each peripheral. It is
assumed that the host machine power supply is rated sufficiently to drive all peripherals that
may be attached to the bus. Unlike USB which places a limit of 0.5A at 5V and which
supports random hot-plugging of peripherals, all ccTalk networks will be pre-determined and
the power calculation will have been done at the system design stage. It is likely that a
machine manufacturer will place a requirement on the peripheral manufacturer when
approving new devices.

Coin hoppers are particularly ‘hungry devices’. The serial hoppers manufactured by Money
Controls require 3A peak at +24V. We recommend that only a single coin type is dispensed
at a time, to reduce the requirement for heavy gauge bus wires and more expensive
connector types. It also reduces the amount of ‘ground shift’ that can occur when all motors
are running. The standard electrical interface circuit of ccTalk is open-collector and is
sensitive to these shifts.

Each peripheral manufacturer has the option of fitting a separate power supply connector to
reduce the loading on the main ccTalk bus. In this case only the 0V and data line need to be
connected to the bus with the supply voltage coming from the auxiliary connector.

4.10 How do I register our company name ?
The ccTalk command ‘Request manufacturer id’, header 246, requests the ASCII
identification string from the peripheral. There are currently 2 formats listed in the generic
specification - full names and abbreviated names. Abbreviated names consist of 3, unique,
upper case characters. Abbreviated names have been recommended for use on bill
validators. If you wish to have a company listed in the generic specification and you are a
manufacturer of ccTalk peripheral equipment then please contact Money Controls. Host
machines will vary in the action they will take on discovering an unknown manufacturer.
Some machines will only operate with a previously approved company and product identifier.
Others will ignore this technicality and continue operation with the generic command set.

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 19 of 20

4.11 I haven’t got time to respond on ccTalk. How do I solve this problem ?
The environment in which ccTalk operates is a master-polled one. The master will poll round
each peripheral in turn, usually looking for new events, and it is the duty of each peripheral to
respond promptly. If a peripheral does not respond immediately then it is preventing other
devices from being polled and eventually the bus will become unusable. The options for a
peripheral which is ‘busy’ on other tasks are as follows…

a) Send a ‘no event’ reply.
The peripheral software should be capable of handling message responses as a
‘background’ task. It should at least be able to respond to an event poll with the same
response as last time and as the event counter will be unchanged this indicates to the host
that no new events have occurred - even if they really have. The effect is to delay the
reporting of events until a more convenient point in the peripheral software. This method
does not require special action on the host side and system polling can continue as normal.
To generalise this approach further, ccTalk commands should be split into ‘immediate
response’ and ‘initialisation and diagnostic’ commands. Only the immediate response
commands will be handled with the peripheral in a ‘cash in / cash out operating state’, the
others can be dealt with at switch-on or when using diagnostic routines. The immediate
response commands are not listed in the generic specification but are typically simple polls,
inhibit modifying and event polling. Also any commands used to switch encryption keys.

b) Send a BUSY response - header 6.
The normal command return header is zero but if it is 6 then this indicates to the host
machine that the peripheral is too busy to reply. Use of this method is discouraged - consider
making serial communications a higher priority task.

c) Do not respond.
Obviously this option is always open to the peripheral but the host has no choice but to wait
for a ‘timeout’ value and then retry or move on to the next peripheral. The host will want the
timeout value to be as short as possible. It also has no idea which of the following conditions
has occurred…

 Peripheral too busy to respond
 Peripheral removed from bus
 Power lost from peripheral
 Peripheral developed a fault
 Message corrupted (bad checksum)
 Incorrect address or encryption settings

ccTalk® Frequently Asked Questions TSP048.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 20 of 20

This manual is intended only to assist the reader in the use of this product and
therefore Money Controls shall not be liable for any loss or damage whatsoever
arising form the use of any information or particulars in, or any incorrect use of the
product. Money Controls reserve the right to change product specifications on any
item without prior notice

	Diary of changes
	General Questions
	Where does the name ‘ccTalk’ come from ?
	Which is correct - ‘cctalk’ or ‘ccTalk’ ?
	Does the name ccTalk refer to hardware, software or a writte
	What is ccTalk and who uses it ?
	Where do I get information on ccTalk ?
	Who is the controlling authority for ccTalk ?
	Do I have to pay any fees to use it ?
	How many wires are needed on ccTalk ?
	What peripherals are covered by ccTalk ?
	Why are the ccTalk command headers not in a sensible order ?
	What software support can you provide ?
	I’ve heard about ccTalk encryption. What is it and when is i
	Can ccTalk run at anything other than 9600 baud ?
	Has anybody written a ccTalk protocol analyser ?
	How many peripherals can be supported on a ccTalk bus ?
	What is the expected ccTalk data line voltage ?
	How ‘noise-immune’ is ccTalk ?
	Can I run ccTalk over USB ?
	Is there a ccTalk test house or approval facility ?
	When was ccTalk ‘invented’ ?
	Is there a web site for ccTalk ?
	What kind of timing problems can I get with ccTalk ?
	My ccTalk software doesn’t work. What should I do ?
	How do I go about obtaining ccTalk encryption documents ?
	How does ccTalk perform error correction and retries ?
	My 8-bit checksum is wrong. Why ?
	My CRC checksum is wrong. Why ?
	What is the longest ccTalk message size ?
	How do I know when a new ccTalk message begins ?
	How do I know which version of ccTalk to use ?
	Other serial protocols seem more sophisticated. Why is this
	Is there a user group for ccTalk ?
	Do I send decimal, hexadecimal or ASCII values in ccTalk ?
	Why are there so many approved ccTalk connector types ?
	I don’t understand MDCES commands. Can you explain ?
	Header 253, Address poll
	Header 252, Address clash
	Header 251, Address change
	Header 250, Address random

	Host Machine Manufacturer Questions
	How do I connect a PC to a ccTalk peripheral ?
	Is there a standard ccTalk ‘driver’ I can use ?
	Is it possible to have 2 ccTalk masters on the same bus ?
	Why is the original PNP ccTalk interface circuit now obsolet
	If I use the broadcast address, all the responses clash. So
	Can I run a ccTalk serial cable between machines ?
	I use Linux. Is that a problem ?
	My company doesn’t have electronic engineering resource. How
	My company does not have software engineering resource. How
	How do I know what coins and bills are available to me in a
	Header 184, Request coin id
	Header 157, Request bill id

	I have local echo. Is that correct ?
	No coins accept.

	Peripheral Manufacturer Questions
	What is the minimum hardware I need to run ccTalk ?
	How do I create a ccTalk product ?
	I want to add some ‘secret’ ccTalk commands. How do I do it
	How do I report multiple fault codes ?
	Can I implement ccTalk on a Microchip PIC microcontroller ?
	Is there a ccTalk logo I can use on my products ?
	How does polling work with a fast coin acceptor in gaming ?
	Does ccTalk support remote download of coins and bills ?
	What power can I source over a ccTalk serial bus ?
	How do I register our company name ?
	I haven’t got time to respond on ccTalk. How do I solve this
	a\) Send a ‘no event’ reply.
	b) Send a BUSY response - header 6.
	c) Do not respond.

