
TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

This document is the copyright of Money Controls Ltd and may not be reproduced in part or in total by any means,
electronic or otherwise, without the written permission of Money Controls Ltd. Money Controls Ltd does not accept
liability for any errors or omissions contained within this document. Money Controls Ltd shall not incur any penalties
arising out of the adherence to, interpretation of, or reliance on, this standard. Money Controls Ltd will provide full
support for this product when used as described within this document. Use in applications not covered or outside the
scope of this document may not be supported. Money Controls Ltd. reserves the right to amend, improve or change the
product referred to within this document or the document itself at any time.

©Money Controls 2004. All rights reserved.
Page 1 of 47

cctalk Expansion for Bill Validators

Issue 2.4

cctalk
bus

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 2 of 47

Revision History

Issue Date Comments
1 15/03/00 First draft
1a 17/03/00 Extra text clarification

Notation section added
Lamp no. added to ‘Control front-panel lamps’
Speed option added to ‘Operate bi-directional motors’

1b 22/06/00 Change to connector type
New command header numbers have been CHANGED
Some text modifications

2 09/08/00 In response to BACTA sub committee meeting…
Addition of CRC checksum
Addition of security layer
Change to connector type

2.1 02/11/00 Typo corrected on page 29.
Header 150 = Request individual accept counter
Header 149 = Request individual error counter
(command list summary was correct)

2.2 27/11/00 Addition of commands…
Header 239 = Operate motors
Header 236 = Read opto states
Header 195 = Request last modification date
“Unknown” return string added to Request currency revision
Upload bill tables - clarification on bill type
New chapter : Switching and Storing Encryption Codes
Addition of glossary

2.3 23/04/03 Added the TSP number
Changed headers and footers
Re-paginated

2.4 30/06/04 Changed footer

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 3 of 47

Contents
1. Introduction.. 5
2. Protocol Settings... 5

2.1. General ..5
2.2. Address..5
2.3. Electrical Interface..5

3. Connector Pinout .. 6
4. Connector Type ... 6
5. cctalk Bill Features.. 7
6. Bill Validator Extensions .. 7

6.1. Compatibility with other cctalk Peripherals...8
7. CRC Checksum ... 8

7.1. CRC Packet Structure..8
7.2. Exceptions ...8

8. Encryption.. 9
8.1. Encryption Mechanism...9
8.2. Encryption Algorithm..9
8.3. Exceptions ...9

9. Protocol Layering.. 10
9.1. General Format..10
9.2. TX Messages ...10
9.3. RX Messages...10

10. Security Features and Typical Operation.. 11
11. Identification Strings ... 12
12. Host Software - Simplified Outline... 12
13. Manufacturer-Specific Commands .. 13

13.1. Bill Identification ...13
14. Command List Summary .. 14

14.1. Core Commands..14
14.2. Core Plus Commands ..14
14.3. Multi-drop Commands..15
14.4. Bill Validator Commands..15
14.5. Diagnostic Commands ...16

15. Notation .. 16
16. Core Commands in Detail ... 17

16.1. Header 254 - Simple poll..17
16.2. Header 245 - Request equipment category id..17
16.3. Header 244 - Request product code ..17
16.4. Header 192 - Request build code ..17
16.5. Header 246 - Request manufacturer id ..18

17. Core Plus Commands in Detail .. 18
17.1. Header 242 - Request serial number ...18
17.2. Header 241 - Request software revision ..18
17.3. Header 4 - Request comms revision ..19
17.4. Header 2 - Request comms status variables ...19
17.5. Header 3 - Clear comms status variables ..19
17.6. Header 1 - Reset device ..19
17.7. Header 197 - Calculate ROM checksum..19
17.8. Header 169 - Request address mode ..20

18. Multi-drop Commands in Detail ... 20
18.1. Header 253 - Address poll ...20
18.2. Header 252 - Address clash...20
18.3. Header 251 - Address change ...20
18.4. Header 250 - Address random...20

19. Bill Validator Commands in Detail ... 20
19.1. Header 159 - Read buffered bill events..20
19.2. Header 231 - Modify inhibit status..22
19.3. Header 230 - Request inhibit status...22
19.4. Header 228 - Modify master inhibit status..22
19.5. Header 227 - Request master inhibit status ...23
19.6. Header 179 - Modify bank select ...23
19.7. Header 178 - Request bank select...23
19.8. Header 181 - Modify security setting..23

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 4 of 47

19.9. Header 180 - Request security setting ...23
19.10. Header 158 - Modify bill id ...24
19.11. Header 157 - Request bill id...24

19.11.1. Unprogrammed bills ..24
19.11.2. RAM Table ..24

19.12. Header 156 - Request country scaling factor ...25
19.13. Header 155 - Request bill position ...26
19.14. Header 154 - Route bill ..26
19.15. Header 213 - Request option flags...27
19.16. Header 153 - Modify bill operating mode ...28
19.17. Header 152 - Request bill operating mode...28
19.18. Header 226 - Request insertion counter ..28
19.19. Header 225 - Request accept counter ...28
19.20. Header 150 - Request individual accept counter ...29
19.21. Header 149 - Request individual error counter ..29
19.22. Header 247 - Request variable set...29
19.23. Header 249 - Request polling priority...30
19.24. Header 202 - Teach mode control..30
19.25. Header 201 - Request teach status..30
19.26. Header 196 - Request creation date ..31
19.27. Header 195 - Request last modification date ...31
19.28. Header 170 - Request base year ...31
19.29. Header 216 - Request data storage availability ...31
19.30. Header 215 - Read data block ...32
19.31. Header 214 - Write data block ...32
19.32. Header 145 - Request currency revision..32
19.33. Header 144 - Upload bill tables..32
19.34. Header 143 - Begin bill table upgrade..33
19.35. Header 142 - Finish bill table upgrade ...33
19.36. Header 141 - Request firmware upgrade capability ...33
19.37. Header 140 - Upload firmware ...33
19.38. Header 139 - Begin firmware upgrade ...34
19.39. Header 138 - Finish firmware upgrade...34
19.40. Header 137 - Switch encryption code ..34
19.41. Header 136 - Store encryption code ..34

20. Diagnostic Commands in Detail... 35
20.1. Header 232 - Perform self-check ...35
20.2. Header 237 - Read input lines ...35
20.3. Header 238 - Test output lines...36
20.4. Header 233 - Latch output lines ...36
20.5. Header 151 - Test lamps..36
20.6. Header 236 - Read opto states ..37
20.7. Header 148 - Read opto voltages ..37
20.8. Header 147 - Perform stacker cycle...37
20.9. Header 239 - Operate motors ..38
20.10. Header 146 - Operate bi-directional motors ...38

21. Switching and Storing Encryption Codes... 39
22. Appendix A - CRC Checksum Algorithm .. 40

22.1. Example Command..40
22.2. Algorithm in C++ ..40
22.3. Loop-up Table..41
22.4. Verification Data...41

23. Appendix B - Encryption Example... 42
24. Appendix C - BNV Event Codes ... 43
25. Appendix D - BNV Fault Codes .. 44
26. Appendix E - Manufacturer ID Strings... 45

26.1. Full Names...45
26.2. Abbreviated Names..45

27. Appendix F - Common Country Codes ... 46
27.1. Europe ...46
27.2. Rest of the World ...46

28. Appendix G - Glossary.. 47

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 5 of 47

1. Introduction

This document covers the expansion in command set needed to operate a bill validator on
the cctalk serial interface.

This document is not meant to be read alone. More details of the cctalk protocol are given
in the generic specification which includes information on the packet structure and error
handling. However, the protocol has now been expanded to cover CRC checksum and
encryption layers.

2. Protocol Settings

2.1. General

Various options exist on cctalk products but the following will be adopted on all bill
validators to maintain compatibility between manufacturers.

Bill Validators
cctalk b96.p0.v12.a12.d0.c5.m0.x16.e1.i0.r4

9600 baud
Open-collector interface
Nominal supply voltage +12V
Serial data pull-up voltage +12V
Supply sink
Connector type 5 (10-way dual header)
Slave device only
CRC CCITT checksum
Encryption type 1
Minor release 0
Major release 4

2.2. Address

The default address for bill validators is 40.

2.3. Electrical Interface

The cctalk data line requires an open-collector drive. A pull-up resistor to +Vs of 10K
should be provided on the bill validator.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 6 of 47

3. Connector Pinout

(1) /DATA cctalk interface
(2) -
(3) -
(4) -
(5) /RESET optional use in cctalk
(6) -
(7) +Vs cctalk interface
(8) 0V cctalk interface
(9) /SERIAL MODE cctalk interface, connect to 0V for serial operation
(10) -

Pin 9 may be used to switch the unit into cctalk serial mode when alternative protocols (
especially parallel) are supported.

4. Connector Type

Recommended peripheral connector :
Molex 8624 Series 0.1inch dual row straight pin breakaway header
P/N 10-89-1101 (15µ gold)

Mechanical keying should be provided by the surrounding cover.

(Alternative :
Molex 70246 Series dual row straight pin low profile shrouded header 70246-1021)

Mates with :
Molex 40312 Series MX50 ribbon cable connector system
P/N 15-29-9710 (15µ gold, centre polarisation, strain relief)

Pin Polarity :

View of connector from front

9 7

10 8

5 3 1

6 4 2

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 7 of 47

5. cctalk Bill Features

cctalk offers a secure, flexible and easy to implement protocol for connecting bill
validators to host machines. Multi-drop capability means that coin acceptors and hoppers
can be connected to the same serial bus.

The most important features of this protocol for bill validators are…

• Simple, high-level, command structure operating at 9600 baud. No address bits or
parity bits required. Genuine 8-bit data packets throughout.

• CRC checksums for data integrity. Even the ‘ACK’ message is protected.
• Encryption on all commands
• Secure operation. A fault with the host machine polling or the serial data line will

automatically prevent bill acceptance
• Support for stacker operation
• Support for escrow operation
• Base support for 16 different bill types. Can be easily expanded to 256 banks of 64

bill types = 16,384 bill types. Bills can be split in any arbitrary way between
currencies e.g. Germany and Euro.

• Bill country and value can be downloaded into a host ‘RAM table’ during
initialisation.

• Bill values can range from 0.01 to over half a billion - no practical restriction.
• Support for remote bill programming
• Support for flash upgrading of firmware
• Support for bill security tuning
• Support for bill teaching
• Extensive diagnostic support
• Full stacker status reporting e.g. stacker removed, stacker inserted…

6. Bill Validator Extensions

The bill validator will conform to cctalk generic specification issue 3.2 (as per 3.1 with
serial hopper commands) but will have extensions to cover CRC checksums and
encryption. Once agreed by all parties, these extensions will be incorporated into generic
specification issue 4.0.

CRC’s have been added to allow detection of all double-bit errors which is appropriate
given the high denominations of bills which will be transferred across the bus.

An encryption layer has been added into the protocol to guard against an illegal ‘listening
device’ connected to the data bus being used to de-fraud the host machine. Each bill
validator will require its own security key to operate.

The extensions to the cctalk protocol have been made without changing the overall packet
length and maintaining the ‘Destination Address / No. of Data Bytes’ start tag. This
maintains a degree of compatibility with the low-level cctalk drivers which already exist,
and allows coin acceptors, serial hoppers and bill validators to co-exist on the same bus.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 8 of 47

6.1. Compatibility with other cctalk Peripherals
Bill validators using CRC checksums and encryption may be mixed with other cctalk
peripherals which don’t have these additional features due to the compatible packet
structure. However, it will be necessary to avoid the use of the broadcast message (
destination address = 0) as one set of peripherals will inevitably decode the command
headers and checksums incorrectly. At best, the peripheral will register a checksum fail.
At worst, it will execute the wrong command. The only useful broadcast address
commands are the MDCES commands ‘Address poll’ and ‘Address random’ which can
be used to scan the bus addresses and randomise them all in the event of a clash.
Therefore, these commands have to be avoided and the peripheral addresses known in
advance by the host machine. This will not be a problem as we are defining the bill
validator as address 40 and the coin acceptor and serial hoppers will likewise be at known
addresses.

7. CRC Checksum

7.1. CRC Packet Structure

All cctalk bill validators should support CRC checksums. The standard cctalk message
packet is modified as follows…

[Destination Address]
[No. of Data Bytes]
[CRC-16 LSB]
[Header]
[Data 1]
...
[Data N]
[CRC-16 MSB]

We lose the ‘Source Address’ field and replace it with the lower byte of the 16-bit CRC
code. The source address of the host machine will always be assumed to be ‘1’.

The checksum is calculated for all message bytes i.e. destination address + no. of data
bytes + header + any data bytes.

Various confusing options exist for CRC algorithms. The one cctalk will adopt is the most
common…

CRC-CCITT
Polynomial = x^16 + x^12 + x^5 + 1
Initial crc register = 0x0000

See Appendix A for the algorithm and test data.

7.2. Exceptions

The responses from the MDCES commands ‘Address poll’ and ‘Address clash’ are single
bytes with no checksum data.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 9 of 47

8. Encryption

8.1. Encryption Mechanism

There is an option (always enabled on bill validators) to encrypt the data in a cctalk
message packet. No additional data bytes are sent to maintain bus performance - just a
scrambling of the existing ones.

The [Destination Address] and [No. of Data Bytes] bytes are left unchanged as they are
needed by the bottom layer of the cctalk driver software. The subsequent bytes in both
transmit and receive messages are encrypted. This includes the header and checksum
bytes.

e.g.
[Destination Address]
[No. of Data Bytes]
[Encrypted 1]
...
[Encrypted N]

8.2. Encryption Algorithm

The encryption algorithm will be made available in another document and will be subject
to controlled release. The algorithm will use a 6-digit ‘security code’ which will have to
be entered into the host machine prior to using a new unit.

8.3. Exceptions

The responses from the MDCES commands ‘Address poll’ and ‘Address clash’ are single
bytes with no encryption.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 10 of 47

9. Protocol Layering

9.1. General Format

The encryption layer is placed below the CRC layer to give extra security. Otherwise a
message could be intercepted, the data changed and the checksum re-calculated. The
decrypted command would have a ‘random’ header and be a potential security risk.

9.2. TX Messages

The procedure is outlined as follows…

 Prepare data packet from destination address, header & data bytes
 Calculate CRC checksum and insert into structure
 Apply encryption to [N - 2] message bytes

9.3. RX Messages

The procedure is outlined as follows…

 Receive message bytes. If address valid then ‘receive and store’ else ‘receive and
count’

 Decrypt message
 Calculate CRC checksum and check to see if data is valid
 Action according to header

Application Layer

CRC Layer

Encryption Layer

Data Link Layer

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 11 of 47

10. Security Features and Typical Operation

At power-up or reset, all bills are automatically inhibited. Polling the bill validator will
return an event counter of zero. The host machine can then download the different bill
types available and create a look-up table for performing vends or game credits. To begin
operation, the individual bill inhibits (sometimes referred to as ‘lockouts’) are released
according to the currencies which wish to be accepted. Then finally, the master inhibit is
released to allow customers to insert bills.

Bill credit information is polled out of the unit typically every 200ms. Since credit
information is sent as a history buffer, any checksum or other comms error allows re-
transmission to take place safely without losing any credit information.

The host must maintain a minimum polling rate to ensure correct operation of the
money handling systems. If the host does not check for bill acceptance very often in
escrow mode, the customer can be kept waiting with a bill in the machine.

If the host fails to poll the bill validator for whatever reason, the ‘credit poll timeout’
expires and the unit is placed in master inhibit mode. A ‘Master inhibit active’ event is
written to the history buffer to inform the host when it next resumes polling. The host will
then have to release the master inhibit condition before normal operation resumes. This
timeout period may typically be 2s.

If the host machine cannot maintain the minimum polling rate due to other system
requirements, it can put the bill validator to ‘sleep’ with the master inhibit command. This
prevents the bill validator from accepting further bills until the host is ready. The credit
poll timeout will be suspended during this interval. If a bill is already in the validator
when the master inhibit command is issued then a credit event is still generated and will
be available when polling resumes. Since after the bill validator is put in master inhibit
mode there may be a pending credit so it is not recommended that the host suspends
polling for any great length of time. Frequent polling is a requirement of the system.

If escrow mode is not being used then a bill credit is generated only after the bill is sent to
the cashbox or stacker. If escrow mode is being used then a bill escrow event is generated,
after which the host machine can decide whether to return the bill or send it to the
cashbox / stacker. If no instruction is received by the bill validator within an ‘escrow
timeout’ period (typically 2 minutes) then the bill is returned to the customer.

If the stacker is full or faulty then no bills can be accepted by the validator. After the last
bill is stacked, a ‘Stacker full’ event is produced. If the stacker is then removed whilst on-
line, a ‘Stacker removed’ event is produced. Plugging it back in gives a ‘Stacker inserted’
event. If the stacker is no longer full, then a ‘Stacker OK’ event is generated. The number
of bills in the stacker at any given time is not reported by the bill validator but relative
counts can be performed by the host machine.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 12 of 47

11. Identification Strings

Due to a number of cctalk bill validators appearing on the market with different feature
sets, some method of identification is essential. The following cctalk commands can be
used.

Command Example Comments
Request equipment category id “Bill Validator” Must be this !
Request product code “Lumina” Manufacturer’s product code
Request build code “Standard” Any product options
Request manufacturer id “MCI” The manufacturer’s identification
Request serial number 12,345,678 A 24-bit binary number
Request software revision “LM-V1.00” The software / firmware revision
Request comms revision [1] [4] [0] First release of cctalk spec. 4.0
Request currency revision “GB-V1.00” The currency revision

12. Host Software - Simplified Outline

The host software can be as complicated as a full cctalk implementation allows. There is a
big difference in writing software for a single bill validator of known type compared with
a full-blown multi-drop bus application with a number of peripherals made by different
manufacturers.

A simplified algorithm for host software is shown below, without showing the extra code
needed to detect unexpected power removal, poll timeouts, jams etc.

The code related to security and encryption is not shown here.

Power-up cctalk bus

Confirm and identify standard bus addresses with…
‘Simple poll’
‘Request equipment category id’

Confirm support available for a particular model…
‘Request product code’
‘Request build code’
‘Request manufacturer id’
‘Request comms revision’

‘Perform self-check’ - are there any faults ?
‘Request option flags’ - check feature set
‘Modify bill operating mode’ - select stacker / escrow options

For each bill type
‘Request bill id’ - generate host look-up table of bill types

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 13 of 47

For each country type
‘Request country scaling factor’ - store scaling factors

‘Modify inhibit status’ - select bills of interest
‘Modify master inhibit status’ - begin bill acceptance

Do
‘Read buffered bill events’

If ‘bill in escrow’
‘Route bill’

else if ‘bill sent to stacker’
Vend or Credit

else if ‘bill returned’
do nothing

While True

The last loop is the main software polling loop of the program. If a coin acceptor is also
connected to the bus then that will be polled in the same loop as well.

13. Manufacturer-Specific Commands

Any manufacturer-specific commands not covered in this document will be provided in
the usual way through command header 255. Commands accessed through this header
number are typically not available to customers and may have some kind of password
protection.

There is no practical limit to the number or data format of manufacturer-specific
commands.

13.1. Bill Identification

At its simplest level, a bill credit will be identified by an integer value, e.g. 1 to 16. So
looking back at a credit log, we may have…

Credit 2
Credit 5
Credit 4
Credit 4
Credit 3
Credit 1
…

A standard may be published by BACTA which covers the credit codes and lockout
positions for UK AWP.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 14 of 47

For example…

Inhibit / Lockout
Position

Credit Code Bill Type

1 1 GB £20.00
2 2 GB £10.00
3 3 GB £5.00

More sophisticated implementations could use the following commands to identify the
note type regardless of its position within the bill validator.

Header 157 - Request bill id
Header 156 - Request country scaling factor

In this case, there would be no need to standardise on lockouts etc.

More information on the use of these commands is detailed below.

14. Command List Summary

Most commands below are already described in the generic specification and are directly
applicable to bill validators. The command set is ‘feature rich’ and certain manufacturers
may choose not to implement them in their entirety. The recommended policy for replying
to unimplemented command headers is don’t do it - i.e. do not return any message bytes at
all. If there is no reply, the command attempted clearly does not work.

It is recommended that all manufacturers of cctalk bill validators support the commands
below marked with an asterisk ‘*’

14.1. Core Commands

*254 - Simple poll
*245 - Request equipment category id
*244 - Request product code
*192 - Request build code
*246 - Request manufacturer id

14.2. Core Plus Commands

*242 - Request serial number
*241 - Request software revision
*004 - Request comms revision
 002 - Request comms status variables
 003 - Clear comms status variables
*001 - Reset device
 197 - Calculate ROM checksum
 169 - Request address mode

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 15 of 47

14.3. Multi-drop Commands

 253 - Address poll
 252 - Address clash
 251 - Address change
 250 - Address random

14.4. Bill Validator Commands

*159 - Read buffered bill events
*231 - Modify inhibit status
*230 - Request inhibit status
*228 - Modify master inhibit status
*227 - Request master inhibit status
 179 - Modify bank select
 178 - Request bank select
 181 - Modify security setting
 180 - Request security setting
 158 - Modify bill id
 157 - Request bill id
 156 - Request country scaling factor
 155 - Request bill position
*154 - Route bill
*213 - Request option flags
*153 - Modify bill operating mode
*152 - Request bill operating mode
 226 - Request insertion counter
 225 - Request accept counter
 150 - Request individual accept counter
 149 - Request individual error counter
*247 - Request variable set
 249 - Request polling priority
 202 - Teach mode control
 201 - Request teach status
 196 - Request creation date
 195 - Request last modification date
 170 - Request base year
*216 - Request data storage availability
 215 - Read data block
 214 - Write data block
*145 - Request currency revision
 144 - Upload bill tables
 143 - Begin bill table upgrade
 142 - Finish bill table upgrade
*141 - Request firmware upgrade capability
 140 - Upload firmware
 139 - Begin firmware upgrade
 138 - Finish firmware upgrade
*137 - Switch encryption code
*136 - Store encryption code

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 16 of 47

14.5. Diagnostic Commands

*232 - Perform self-check
 237 - Read input lines
 238 - Test output lines
 233 - Latch output lines
 151 - Test lamps
 236 - Read opto states
 148 - Read opto voltages
*147 - Perform stacker cycle
 239 - Operate motors
 146 - Operate bi-directional motors

15. Notation

The ‘Transmitted data’ and ‘Received data’ fields only show data bytes - the rest of the
cctalk packet structure is not shown for ease of reading.

Transmitted data bytes, indicated by square brackets, are shown in the order they are
transmitted, i.e. the first byte transmitted on the left, the last byte transmitted on the right.

Received data bytes, indicated by square brackets, are shown in the order they are
received, i.e. the first byte received on the left, the last byte received on the right.

Data byte values are shown in decimal unless otherwise stated.

Bit fields within bytes are shown the other way around - with the MSB on the left and
LSB on the right.

For example…
Received data : [B1:7 … B1:0] [B2:7 … B2:0] [B3:7 … B3:0]

B1:7 = bit 7 of byte 1, the first byte received
B3:0 = bit 0 of byte 3, the last byte received

If this data was a counter value, then it could be converted into decimal by calculating…
B1 + (256 * B2) + (65536 * B3)

Any fields which show [bill type] refer to the ‘number’ or ‘channel’ of the bill. Different
manufacturers use different terms. For instance, if a bill validator recognises 16 different
bills, then the bill type is a number from 1 to 16. Type 1 may be a $1 bill, type 2 may be a
$10 bill etc… The bill type does not reflect orientation information - each type may have
up to 4 possible orientations, the profiles of which are stored internally.

The bill type also determines which inhibit bit is used to inhibit or enable the bill with the
‘Modify inhibit status’ command. Using a 16-bit inhibit mask, inhibit 1 controls bill type
1, inhibit 2 controls bill type 2… inhibit 16 controls bill type 16. There is no option to re-
map these inhibits into a different pattern.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 17 of 47

16. Core Commands in Detail

16.1. Header 254 - Simple poll

Transmitted data : <none>
Received data : ACK

16.2. Header 245 - Request equipment category id

Transmitted data : <none>
Received data : “Bill Validator”

Any manufacturer’s equipment previously described as a ‘Bill Acceptor’ or ‘Note
Acceptor’ will adopt the MDB naming convention of ‘Bill Validator’. Failure to report the
exact characters ‘Bill Validator’ will mean the host machine will not attempt to operate
the device.

Note that in line with other cctalk commands, the string is case-sensitive.

In decimal, the return data is…

[66] [105] [108] [108] [032]
[86] [097] [108] [105] [100] [97] [116] [111] [114]

16.3. Header 244 - Request product code

Transmitted data : <none>
Received data : ASCII string

A manufacturer-specific product code e.g. “Lumina”

16.4. Header 192 - Request build code

Transmitted data : <none>
Received data : ASCII string

The build code is an ASCII string (typically 8 characters or less) representing important
product build features. This string is manufacturer-specific so consult product
documentation for more details.

If a manufacturer chooses not to implement this feature then they should return the string
‘Standard’ as a generic device response.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 18 of 47

16.5. Header 246 - Request manufacturer id

Transmitted data : <none>
Received data : ASCII string

See Appendix E for a list of registered bill validator manufacturers.

If you are not on this list and would like to be then please contact Money Controls.

The bill validator will return a 3 character ASCII string so that the host machine can
identify any manufacturer-specific command features.

17. Core Plus Commands in Detail

17.1. Header 242 - Request serial number

Transmitted data : <none>
Received data : [serial 1] [serial 2] [serial 3]

All bill validators are programmed sequentially with a 3 byte serial number during the
factory set-up process. This serial number cannot be subsequently changed.

The serial number is stored in ‘machine readable’ or binary format, rather than ASCII.
The least significant byte is returned first.

For example, if the return data is [78] [97] [188] then the serial number is
78 + 256 * 97 + 65536 * 188 = 12,345,678.

17.2. Header 241 - Request software revision

Transmitted data : <none>
Received data : ASCII string

e.g. “LM-V1.00”

Any internal changes in firmware will be represented in the software revision string. It is
not recommended that any code changes, however small, are ‘hidden’ from external
examination.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 19 of 47

17.3. Header 4 - Request comms revision

Transmitted data : <none>
Received data : [cctalk level] [major revision] [minor revision]

All bill validators will return at least [1] [4] [0] to reflect the new issue 4.0
specification document.

A manufacturer may wish to up-issue the ‘cctalk level’ to reflect any comms driver
changes that need to be notified to the host machine.

17.4. Header 2 - Request comms status variables

Transmitted data : <none>
Received data : [rx timeouts] [rx bytes ignored] [rx bad checksums]

Operation as per the generic specification.

17.5. Header 3 - Clear comms status variables

Transmitted data : <none>
Received data : ACK

Operation as per the generic specification.

17.6. Header 1 - Reset device

Transmitted data : <none>
Received data : ACK

Operation as per the generic specification.

The product documentation should state clearly the time required for the bill validator to
initialise and be ready to accept the next serial command.

17.7. Header 197 - Calculate ROM checksum

Transmitted data : <none>
Received data : [checksum 1] [checksum 2] [checksum 3] [checksum 4]

The unit will calculate and return a 4 byte checksum of the firmware in the bill validator.
The method of calculation and address ranges used are manufacturer-specific.

[checksum 1] is the least significant byte.

This command does not confirm whether the checksum is ‘correct’ but BNV fault code 30
can be used for this purpose.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 20 of 47

17.8. Header 169 - Request address mode

Transmitted data : <none>
Received data : [address mode]

Refer to the generic specification.

A typical product may return 84H to indicate that the device address is stored in
EEPROM and may be changed using serial commands.

18. Multi-drop Commands in Detail

18.1. Header 253 - Address poll

Operation as per the generic specification.

18.2. Header 252 - Address clash

Operation as per the generic specification.

18.3. Header 251 - Address change

Operation as per the generic specification.

18.4. Header 250 - Address random

Operation as per the generic specification.

19. Bill Validator Commands in Detail

19.1. Header 159 - Read buffered bill events

Transmitted data : <none>
Received data : [event counter]

[result 1A] [result 1B]
[result 2A] [result 2B]
[result 3A] [result 3B]
[result 4A] [result 4B]
[result 5A] [result 5B]

[event counter]
0 = power-up or reset
1 to 255 = event counter

After 255, the event counter loops back to 1.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 21 of 47

A history buffer of the last 5 events is always returned. Each event is a 2 byte pair,
representing a bill credit or an error / event code.

Credits
[1 to 255] [0] Bill type 1 to 255 validated correctly, sent to cashbox / stacker
[1 to 255] [1] Bill type 1 to 255 validated correctly, held in escrow

If an escrow is fitted and enabled, then bills are kept in the escrow until a host command
is issued (‘Route bill’) instructing the unit to return the bill or to send the bill to the
cashbox or stacker. If this is the case, a host vend or credit should not take place until
confirmation is received of this manual accept instruction.

Errors / Events
[0] [0] Master inhibit active
[0] [1] Bill returned from escrow
See Appendix C (BNV Event Codes) for the rest.

When the bill validator powers up, or is reset, the event counter is zero, the master inhibit
is active and all individual bills are inhibited.

If at any time a credit poll timeout occurs (no ‘Read buffered bill events’ have been sent
for several seconds) then the bill validator sets the master inhibit and refuses to take any
more bills. This is a safety feature in case the host link goes down.

Although individual bills can be inhibited and enabled on serial, there may be some
master override DIP switches on the casing. These can be used to inhibit a problem bill
without having to change the host machine firmware. If a bill is inhibited by DIP switch
then this is reported as such, rather than the usual ‘Inhibited bill (on serial)’ message. A
DIP switch inhibit cannot be re-enabled over the serial line.

The ‘Bill returned from escrow’ message is sent if an escrow is being used and the host
machine instructs the bill validator to return rather than accept the bill. If the host fails to
instruct the bill validator within a timeout period then the bill is automatically returned to
the customer and this message issued.

The normal event for an unrecognised bill type is the ‘Invalid bill (due to validation fail
)’ message. The bill is automatically returned to the customer.

Note that continuous fraud or jam conditions need only be reported once. If they are
eventually cleared then the bill validator will report credits as normal.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 22 of 47

19.2. Header 231 - Modify inhibit status

Transmitted data : [inhibit mask 1] [inhibit mask 2]
Received data : ACK

Bit format : 0 = inhibit bill, 1 = enable bill

There is individual inhibit support for 16 different bill types (2 byte inhibit mask).

All bills default on power-up or reset to ‘inhibited’.

Inhibit status is RAM-based and volatile.

Note : Future products may see mask expansion to cover 64 or 128 note types.

19.3. Header 230 - Request inhibit status

Transmitted data : <none>
Received data : [inhibit mask 1] … [inhibit mask 2]

Note that this command reads the status of the ‘serial’ inhibits, i.e. those set with the
‘Modify inhibit status’ command. Any inhibit overrides set on DIP switches are not
visible with this command, even if they result in a bill being inhibited.

To read the status of DIP switches, it is suggested that the ‘Read input lines’ command is
used which will obviously be product specific. Some bill validators may have no DIP
switches and others may provide a manual override on each and every bill.

19.4. Header 228 - Modify master inhibit status

Transmitted data : [XXXXXXX | master inhibit status]
Received data : ACK

Bit format : 0 = inhibit all bills, 1 = resume normal operation

Only ‘Bit 0’ is used.

This command allows the bill validator to be quickly placed in a state whereby it inhibits
all bills without changing the status of the individual bill inhibits. Therefore, normal
operation of the bill validator can be suspended or resumed with this command.

All bill validators default to master inhibit active on power-up or reset.

Master inhibit status is RAM-based and volatile.

To inhibit a bill validator, send [0]
To enable a bill validator, send [1]

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 23 of 47

19.5. Header 227 - Request master inhibit status

Transmitted data : <none>
Received data : [XXXXXXX | master inhibit status]

See above.

19.6. Header 179 - Modify bank select

Transmitted data : [bank no.]
Received data : ACK

To allow the manufacture of a bill acceptor with substantially more bill types than 16, it
may be beneficial to split the stored types into ‘banks’ and use this command to switch
them in and out of memory. Any bills in memory and ‘active’ can be accepted, subject to
the status of the individual bill inhibits.

If a bill validator can only support one active bank of 16 bills then the only valid bank
number is ‘0’. In which case, this command is redundant and need not be used.

The bank select code is RAM-based and volatile.

19.7. Header 178 - Request bank select

Transmitted data : <none>
Received data : [bank no.]

See above.

19.8. Header 181 - Modify security setting

Transmitted data : [bill type] [security setting]
Received data : ACK

The bill validator may have a mechanism to change the security setting of various bills to
combat a particular fraud problem. Refer to the generic specification for more details -
operation for coin acceptors is described. The command is the equivalent of a digital
tuning potentiometer giving precise and fine adjustment of close frauds.

The bill security setting is usually RAM-based such that factory defaults are restored after
the next power-down. There may be an option to prevents security tuning in sensitive
applications.

19.9. Header 180 - Request security setting

Transmitted data : [bill type]
Received data : [security setting]

See above.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 24 of 47

19.10. Header 158 - Modify bill id

Transmitted data : [bill type] [char 1] [char 2] [char 3]… [char 7]
Received data : ACK

This command allows the identifier string for a particular bill to be changed - useful after
teaching it a new bill.

See below for details.

Bill id strings are stored in EEPROM or NVRAM and are permanent.

19.11. Header 157 - Request bill id

Transmitted data : [bill type]
Received data : [char 1] [char 2] [char 3]… [char 7] e.g. “US0100A”

Each bill type is identified by a 7 character ASCII string. This is formed as follows…

2 character international country code e.g. US
4 character value code e.g. 0100
1 character issue code e.g. A, B, C…

All countries of the world are given a 2 character country code. See Appendix F.

Old and new notes in a currency would have the same country and value codes, but a
different issue code. Identifying them uniquely allows an old note to be inhibited at some
point and only the new note accepted.

The actual monetary value is in multiples of the scaling factor appropriate to that country
- see the next command.

Note that each bill is usually stored internally as 4 different profiles representing the 4
possible insertion orientations. This extra information is not reported externally by
‘customer’ commands. This version of the specification does not allow control over bill
orientation. For instance, standard inhibit control is provided for 16 different bills rather
than the 64 possible bill-orientation combinations.

19.11.1. Unprogrammed bills

If a bill position is blank, i.e. a bill has not been programmed into that position, then the
convention is to return ASCII ‘dots’ instead. Therefore, return ‘…….’ or 7 characters of
ASCII code 46.

19.11.2. RAM Table

It is suggested the host machine fill a RAM table of bill types during the bill validator
initialisation routine. The ‘Request bill id’ command can be used in conjunction with the
‘Request country scaling factor’ command to determine the exact monetary value of each
note.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 25 of 47

For example…

Bill type Bill id Scaling factor Decimal places Value
1 US0001A 100 2 $1.00
2 US0002A 100 2 $2.00
3 US0005A 100 2 $5.00
4 US0010A 100 2 $10.00
5 US0020A 100 2 $20.00
6 US0050A 100 2 $50.00
7 US0100A 100 2 $100.00
8 ……. - - -
9 ……. - - -
10 ……. - - -
11 ……. - - -
12 ……. - - -
13 ……. - - -
14 ……. - - -
15 ……. - - -
16 ……. - - -

The scaling factors will need to be read for all country types in use, and this can be
determined by reading all the bill id’s first with the ‘Request bill id’ command and using
the first two characters of the return string in the ‘Request country scaling factor’
command.

19.12. Header 156 - Request country scaling factor

Transmitted data : [country char 1] [country char 2]
Received data : [scaling factor LSB] [scaling factor MSB] [decimal places]

The ‘scaling factor’ and ‘decimal places’ for any particular country code can be requested
by the host machine. If the country code is not recognised then 3 null bytes should be
returned by the bill validator i.e. [0] [0] [0].

The scaling factor is used to calculate the monetary value of each bill (typically 1, 100,
1000) and the decimal places is used when displaying this value on the front panel of a
machine (typically 0 or 2).

For example, for a $10 bill…

Bill value Scaling factor Decimal places Display as…
10 1 0 $10
10 100 2 $10.00
10 100 0 1000c

This version of the serial protocol allows a typical bill range of…

Bill value Scaling factor Decimal places Display as…
1 1 2 0.01
9999 65535 0 655,284,465

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 26 of 47

19.13. Header 155 - Request bill position

Transmitted data : [country char 1] [country char 2]
Received data : [position mask 1] [position mask 2]

This command is a fast way of determining where bills belonging to particular country are
stored. For instance, to enable all Euro bills, the host machine must determine the required
inhibit pattern for use with the ‘Modify inhibit status’ command. This return data can be
used directly.

For example, if the return data is [11000000] [00001111] then 6 bills of the specified
type are stored in positions 7 to 12.

Bill types 8 to 1 11000000
Bill type 16 to 9 00001111

Sending this data back with the ‘Modify inhibit status’ command will immediately enable
them and inhibit the remainder.

19.14. Header 154 - Route bill

Transmitted data : [route code]
Received data : ACK or [error code]

[route code]
0 - return bill
1 - send bill to cashbox / stacker

[error code]
254 - escrow is empty
255 - failed to route bill

This command allows a bill held in the escrow to be routed in one of two ways - back to
the customer or into the cashbox or stacker.

Stacking a bill typically takes 2 to 3 seconds. An event will be generated when a bill is
returned or stacked.

Note that if the stacker is full then the unit will not accept any bills. Likewise if there is a
fault with the stacker. Attempting to route the bill under these conditions returns an error
code rather than an ACK.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 27 of 47

19.15. Header 213 - Request option flags

Transmitted data : <none>
Received data : [feature bit mask]

[feature bit mask]
B0 - stacker supported
B1 - escrow supported
B2 - individual bill accept counters supported
B3 - individual error counters supported
B4 - all counters are non-volatile
B5 - bill teach supported
B6 - bill security tuning supported
B7 - remote bill programming supported

A bit value of 0 (clear) means the feature is not supported. A bit value of 1 (set) means
the feature is supported.

This command helps the host software to determine what features are provided by a
particular bill validator.

The following cctalk commands are governed by feature support…

B0 - stacker supported
Modify bill operating mode
Request bill operating mode
Perform stacker cycle

B1 - escrow supported
Modify bill operating mode
Request bill operating mode
Route bill

B2 - individual bill accept counters supported
Request individual accept counter

B3 - individual error counters supported
Request individual error counter

B4 - all counters are non-volatile
Host machine does not need to store counter values

B5 - bill teach supported
Teach mode control
Request teach status

B6 - bill security tuning supported
Modify security setting
Request security setting

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 28 of 47

B7 - remote bill programming supported
Upload bill tables
Begin bill table upgrade
Finish bill table upgrade

19.16. Header 153 - Modify bill operating mode

Transmitted data : [mode control mask]
Received data : ACK

[mode control mask]
B0 - stacker (0 = do not use, 1 = use)
B1 - escrow (0 = do not use, 1 = use)

The host machine can determine whether a stacker and / or escrow are used. It may be the
case that on a particular model changing these settings has no effect.

The default mode on power-up is product specific. Changes are RAM-based and volatile.

19.17. Header 152 - Request bill operating mode

Transmitted data : <none>
Received data : [mode control mask]

See above.

19.18. Header 226 - Request insertion counter

Transmitted data : <none>
Received data : [count 1] [count 2] [count 3]

Counter of bills inserted, regardless of outcome.

This counter may or may not be volatile - check with a specific manufacturer. If it is
volatile, then it is up to the host machine to retain audit data between sessions.

19.19. Header 225 - Request accept counter

Transmitted data : <none>
Received data : [count 1] [count 2] [count 3]

Counter of bills sent to cashbox or stacker.

This counter may or may not be volatile - check with a specific manufacturer. If it is
volatile, then it is up to the host machine to retain audit data between sessions.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 29 of 47

19.20. Header 150 - Request individual accept counter

Transmitted data : [bill type]
Received data : [count 1] [count 2] [count 3]

Each type of bill can have a corresponding accept counter. The value of that counter may
be read with this command.

Use the ‘Request option flags’ command to see if this feature is supported.

This counter may or may not be volatile - check with a specific manufacturer. If it is
volatile, then it is up to the host machine to retain audit data between sessions.

19.21. Header 149 - Request individual error counter

Transmitted data : [error type]
Received data : [count 1] [count 2] [count 3]

[error type]
2 - Invalid bill (due to validation fail)
3 - Invalid bill (due to transport problem)
8 - Bill pulled backwards
9 - Bill tamper

See Appendix C (BNV Event Codes) for other error types.

Some types of error can have a corresponding counter. The value of that counter may be
read with this command. If the error type is not recognised then the bill validator should
not reply.

Use the ‘Request option flags’ command to see if this feature is supported.

This counter may or may not be volatile - check with a specific manufacturer. If it is
volatile, then it is up to the host machine to retain audit data between sessions.

19.22. Header 247 - Request variable set

Transmitted data : <none>
Received data : [variable 1] [variable 2]

Two variables are currently defined, but more may be returned in future.

[variable 1]
No. of bill types concurrently supported (typically 16)

[variable 2]
No. of banks supported (typically 1)

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 30 of 47

19.23. Header 249 - Request polling priority

Transmitted data : <none>
Received data : [units] [value]

Refer to the generic specification. A typical bill validator may request a credit polling
time of 200ms.

See the section ‘Security Features and Typical Operation’ for a discussion on polling
requirements.

19.24. Header 202 - Teach mode control

Transmitted data : [bill type] [orientation]
Received data : ACK

[orientation]
1 to 4

This command allows a new bill to be inserted into a bill validator a number of times in
order to allow the ‘pattern’ to be recognised in future.

Bills will need to be inserted in a variety of orientations - details of the process have yet to
be published. Using this command allows the host machine (via the front console) to put
the bill validator into ‘teach mode’ whilst this process is carried out.

Use the ‘Request option flags’ command to see if this feature is supported.

19.25. Header 201 - Request teach status

Transmitted data : [mode]
Received data : [no. of bills entered] [status code]

[mode]
0 - default
1 - abort validator teach mode

[status code]
252 - teach aborted
253 - teach error
254 - teaching in progress (busy)
255 - teach completed

Use the ‘Request option flags’ command to see if this feature is supported.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 31 of 47

19.26. Header 196 - Request creation date

Also known as ‘Date of manufacture’ or ‘Factory set-up date’.

Transmitted data : <none>
Received data : [date code LSB] [date code MSB]

Standard cctalk RTBY format (‘relative-to-base-year’).

Bit Positions
15 14 13 9 8 5 4 0
Reserved Year Month Day

- Relative 1 to 12 1 to 31

As an example, if the base year was 2000, then a date code of 0021 hex would indicate 1st

January, 2000.

The base year can be determined with the ‘Request base year’ command.

19.27. Header 195 - Request last modification date

Transmitted data : <none>
Received data : [date code LSB] [date code MSB]

Standard cctalk RTBY format (‘relative-to-base-year’). See previous command.

This command can be used to determine the date the product was last modified e.g. to put
in new bill tables.

19.28. Header 170 - Request base year

Transmitted data : <none>
Received data : 4 x ASCII chars e.g. “2000”

The base year of the product in ASCII - usually the year the product was designed. All
date codes are relative to this year.

19.29. Header 216 - Request data storage availability

Transmitted data : <none>
Received data : [memory type] [read blocks] [read bytes per block]

[write blocks] [write bytes per block]

Some bill validators may provide a small storage space in memory for use by the host
machine (logging machine id numbers etc).

Refer to the generic specification for an explanation of memory types and the block
notation.

If no data storage is provided by the bill validator then null bytes should be returned…
[0] [0] [0] [0] [0] - no data storage available

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 32 of 47

19.30. Header 215 - Read data block

Transmitted data : [block number]
Received data : [data 1] [data 2] [data 3] ...

The read mechanism for user data blocks.

19.31. Header 214 - Write data block

Transmitted data : [block number] [data 1] [data 2] [data 3] ...
Received data : ACK

The write mechanism for user data blocks.

19.32. Header 145 - Request currency revision

Transmitted data : <none> or [country char 1] [country char 2]
Received data : ASCII string

A manufacturer-specific currency revision string is returned. This string can be used to
check whether remote programming a new bill set with the ‘Upload bill tables’ command
is necessary.

Certain manufacturers may choose to assign different revision codes to different countries
and so the revision string for a specific country can be requested as shown.

If this country code is not supported then the string “Unknown” should be returned..

19.33. Header 144 - Upload bill tables

Transmitted data : [block] [line] [data 1] [data 2]… [data 128]
Received data : ACK

[block]
0 to 255

[line]
0 to 255

This is a generic command to transfer new currency information into a bill validator in a
‘manufacturer neutral’ format. There is no reference to bill type - it is assumed that this is
represented internally within the data structure.

The data is split into block / line segments with 256 lines in each block and up to 128 data
bytes in each line. Therefore this command is used repeatedly to transfer all the required
currency information.

Any number of bytes between 1 and 128 may be transferred with this command as the
message packet already contains a length field.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 33 of 47

It is assumed the ‘line’ counter will be nested within the ‘block’ counter as follows…

for (block = 0; block <= max_block; ++block)
{
for (line = 0; line <= 255; ++line)

Send command(block, line, data_array);
}

The maximum data that can be transferred with this command is…
256 x 256 x 128 = 8 Mbytes

If a manufacturer chooses to integrate the firmware and bill tables then this command can
be used to transfer both in one go.

To check the currency revision before and after upgrading, use the ‘Request currency
revision’ command.

19.34. Header 143 - Begin bill table upgrade

Transmitted data : <none>
Received data : ACK

This command notifies the bill validator that a currency upgrade is about to take place.
The ‘Upload bill tables’ command can then be used to transfer the information which will
be in a manufacturer-specific format.

19.35. Header 142 - Finish bill table upgrade

Transmitted data : <none>
Received data : ACK

This command notifies the bill validator that a currency upgrade has finished.

19.36. Header 141 - Request firmware upgrade capability

Transmitted data : <none>
Received data : [firmware options]

[firmware options]
0 - firmware in ROM / EPROM
1 - firmware in FLASH / EEPROM with upgrade capability

To check the firmware revision before and after upgrading, use the ‘Request software
revision’ command.

19.37. Header 140 - Upload firmware

Transmitted data : [block] [line] [data 1] [data 2]… [data 128]
Received data : ACK

This is a generic command to transfer new firmware into a bill validator.

The format is the same as the ‘Upload bill tables’ command.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 34 of 47

19.38. Header 139 - Begin firmware upgrade

Transmitted data : <none>
Received data : ACK

This command notifies the bill validator that a firmware upgrade is about to take place.
The ‘Upload firmware’ command can then be used to transfer the information.

19.39. Header 138 - Finish firmware upgrade

Transmitted data : <none>
Received data : ACK

This command notifies the bill validator that a firmware upgrade has finished.

19.40. Header 137 - Switch encryption code

Transmitted data : [sec 2 | sec 1] [sec 4 | sec 3] [sec 6 | sec 5]
Received data : ACK

This command allows the encryption security code used in the cctalk encryption layer to
be changed ‘on-the-fly’ by the host machine. Use of this command is optional but it can
help increase security by causing seemingly random variations in the same message
packet.

‘sec 1’ to ‘sec 6’ are 4-bit BCD digits in the range 0 to 9

For example, to change the security code to ‘123456’ we would send [21] [43] [65] in
hex to the host machine.

The new security code takes effect after the ACK is returned.

The new security code is stored in volatile memory only. To make it permanent then the
host machine can send the ‘’ command.

19.41. Header 136 - Store encryption code

Transmitted data : <none>
Received data : ACK

This command makes a change to the encryption security code permanent by having the
bill validator write the new value to NV memory. This is part of the encryption technique
described more fully in the accompanying security document.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 35 of 47

20. Diagnostic Commands in Detail

Note that diagnostic commands are intended for use during power-up initialisation or for
‘bench’ diagnostic equipment. Access to diagnostic mode may also be given through the
host menu system which is usually PIN number or key protected. Diagnostic commands
should not be issued during normal operation as they could interfere with the bill
validation system - particularly the bill transport mechanism.

20.1. Header 232 - Perform self-check

Transmitted data : <none>
Received data : [fault code]

or

Transmitted data : <none>
Received data : [fault code] [extra info]

[fault code]
0 - OK
1 - EEPROM checksum corrupted
See Appendix D (BNV Fault Codes) for the rest.

[extra info]
May be used to report which sensor, motor etc. has a fault.

The fault code table is shared with coin acceptors as there is some overlap with potential
fault conditions.

Only one fault can be reported at a time and these are internally prioritised by the bill
validator. Fixing one particular fault may reveal another !

20.2. Header 237 - Read input lines

Transmitted data : <none>
Received data : [data 1] [data 2] [data 3]...

This command may be used to read DIP switches etc. for use by diagnostic software.

Manufacturer and product specific.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 36 of 47

20.3. Header 238 - Test output lines

Transmitted data : [bit mask]
Received data : ACK

[bit mask]
Each bit :
0 = output off
1 = output on

This command may be used to output test patterns on parallel-mode connectors for use by
diagnostic software.

The outputs are typically pulsed for 50ms.

Manufacturer and product specific.

20.4. Header 233 - Latch output lines

Transmitted data : [bit mask]
Received data : ACK

[bit mask]
Each bit :
0 = output off
1 = output on

This command may be used to output test patterns on parallel-mode connectors for use by
diagnostic software.

Outputs are latched until cancelled by sending a null byte.

Manufacturer and product specific.

20.5. Header 151 - Test lamps

Transmitted data : [lamp no.] [lamp control]
Received data : ACK

[lamp no.]
Lamp no. 1 to 255

[lamp control]
0 - automatic mode, allow bill validator to control lamp (default)
1 - manual mode, force lamp off
2 - manual mode, force lamp on

Some bill validators have front panel lamps which may be controlled via the host
machine. If the host machine has a problem, it could decide to inhibit the bill validator
and turn off the front-panel lamps.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 37 of 47

If a single lamp is used then the only available lamp number is 1 - other lamp numbers
will have no effect.

Automatic mode allows the bill validator to control its own lamps. Inhibiting all the bills
in automatic mode would typically cause the bill validator to switch its own lamps off to
avoid unwanted attention.

20.6. Header 236 - Read opto states

Transmitted data : <none>
Received data : [opto states]

[opto states]
Each bit :
0 - opto clear
1 - opto blocked

Bit positions are manufacturer and product specific.

20.7. Header 148 - Read opto voltages

Transmitted data : <none>
Received data : [opto voltage 1] [opto voltage 2] [opto voltage 3] …

This command can be used to read various photo-electronic voltages used in the bill
validation process. All voltage measurements are scaled into a 8-bit range. Therefore a 5V
range could be resolved to an accuracy of about 20mV.

Count Voltage
255 5.00
192 3.76
128 2.51
64 1.25
0 0.00

Manufacturer and product specific.

20.8. Header 147 - Perform stacker cycle

Transmitted data : <none>
Received data : ACK or [error code]

[error code]
254 - stacker fault
255 - stacker not fitted

This command executes 1 cycle of the stacker for diagnostic purposes. The ACK is only
returned after the stacker cycle is completed - typically after a few seconds. An error code
may possibly be returned.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 38 of 47

20.9. Header 239 - Operate motors

Transmitted data : [motor bit mask]
Received data : ACK

[motor bit mask]
B0 - motor 1 (0 = off, 1 = on)
B1 - motor 2 (0 = off, 1 = on)
B2 - motor 3 (0 = off, 1 = on)
…

This is a legacy command with no control over speed and direction. See below if you
require these advanced features.

Manufacturer and product specific. It may not be implemented as a ‘public’ command for
security reasons.

20.10. Header 146 - Operate bi-directional motors

Transmitted data : [motor bit mask] [direction flags] [speed]
Received data : ACK

This command allows up to 8 motors to be operated in either forward or reverse direction.

[motor bit mask]
B0 - motor 1 (0 = off, 1 = on)
B1 - motor 2 (0 = off, 1 = on)
B2 - motor 3 (0 = off, 1 = on)
…

[direction flags]
B0 - motor 1 (0 = backwards, 1 = forwards)
B1 - motor 2 (0 = backwards, 1 = forwards)
B2 - motor 3 (0 = backwards, 1 = forwards)
…

[speed]
0 - default speed
1 to 255 - relative speed number, 1 = slowest, 255 = fastest

The main bill transport motor will be controlled by ‘B0’. If a motor has speed control then
it can make use of the 3rd data byte. Otherwise, it will be ignored.

Manufacturer and product specific. It may not be implemented as a ‘public’ command for
security reasons.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 39 of 47

21. Switching and Storing Encryption Codes

The ability of the protocol to obscure what is happening from an external attack is
dependent on the frequency with which the encryption code is changed. Given sufficient
data capture over a long period of time, it would be possible to break any encryption
algorithm. However, this task is massively complicated if the code which controls the
encryption process is changed on-the fly. As the command to change the encryption code
to a new one is itself encrypted, the cryptanalysis process is extremely hard.

It is suggested that the host machine issues a new security code with the ‘Switch
encryption code’ command before every credit poll using the ‘Read buffered bill events’
command. This could typically be every 200ms.

Storing the encryption code does not need to be done as often and is really for retention of
the last code between sessions (when the machine is switched off). This prevents an easy
way in for a hacker as there would be no indication of the next power-up code. Check
with the manufacturer of the BNV for recommendations on storing encryption codes and
any limitations there may be.

Changing the encryption code from the existing one to the next one is obviously a critical
period in the operation of the BNV. If power is lost to the device in the middle of the
switch then the expected encryption code may not work. It is suggested therefore that the
host machine retains the following codes in the event of this type of failure…

• new encryption code
• existing encryption code
• power-up encryption code (the last stored value)
• product label encryption code (entered into the machine)

If a credit poll fails after switching the encryption code to a new one, it is suggested the
one prior to switching is tried next, then the power-up code and finally the product label
code. The power-up code will be the one in force when the last ‘Store encryption code’
command was used and the product label code was the one entered into the machine when
installing the device. If none of these work then the encryption code has probably been
scrambled and so you will need to consult the BNV manufacturer for any possible
recovery mechanism.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 40 of 47

22. Appendix A - CRC Checksum Algorithm

22.1. Example Command

To calculate the CRC protected message packets for the ‘Reset device’ command…

TX : [40] [0] [crc_lsb] [1] [crc_msb]
RX : [1] [0] [crc_lsb] [0] [crc_msb]

The TX packet is to address 40 (bill validator) with header 1 (Reset device) and no
data. The receive packet is to address 1 (host controller) with a null header and no data (
the ACK message).

TX crc = CRC(40, 0, 1) = 3F46 hex
RX crc = CRC(1, 0, 0) = 3730 hex

TX crc_lsb = 46 hex, 70 dec
TX crc_msb = 3F hex, 63 dec
RX crc_lsb = 30 hex, 48 dec
RX crc_msb = 37 hex, 55 dec

Therefore, the completed message packets are…

TX : [40] [0] [70] [1] [63]
RX : [1] [0] [48] [0] [55]

22.2. Algorithm in C++

void generate_crc_lookup_CCITT_A(void)

{
int i;
BYTE z = 0;

for (i = 0; i < 256; ++i)
crc_lookup_table_CCITT_A[i] = calculate_crc_loop_CCITT_A(1, &z, i << 8);

}

WORD calculate_crc_lookup_CCITT_A(int l, BYTE *p, WORD seed)

{
int i;
WORD crc = seed;

for (i = 0; i < l; ++i)
crc = (crc << 8) ^ crc_lookup_table_CCITT_A[(crc >> 8) ^ p[i]];

return crc;

}

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 41 of 47

WORD calculate_crc_loop_CCITT_A(int l, BYTE *p, WORD seed)

{
int i, j;
WORD crc = seed;

for (i = 0; i < l; ++i)
{
crc ^= (p[i] << 8);

for (j = 0; j < 8; ++j)
{
if (crc & 0x8000)

crc = (crc << 1) ^ 0x1021; // 0001.0000 0010.0001 = x^12 + x^5 + 1
(+ x^16)

else
crc <<= 1;

}
}

return crc;

}

22.3. Loop-up Table

const unsigned short crc_ccitt_lookup[] =
{
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49,
0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,
0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};

22.4. Verification Data
Random test data…

Data = 49 D5 F2 / CRC-CCITT Checksum = A6B3
Data = 2F BD 9D / CRC-CCITT Checksum = 90B2
Data = D9 53 D1 / CRC-CCITT Checksum = 7BB5

Data = 70 B8 D9 64 04 15 / CRC-CCITT Checksum = FB00
Data = 72 61 B9 4E D0 78 / CRC-CCITT Checksum = 93E3
Data = 63 FA D1 9F E6 19 / CRC-CCITT Checksum = 5BB3

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 42 of 47

23. Appendix B - Encryption Example

In this example, we will assume the 6 digit security code is ‘123456’ and the encryption
algorithm is something simple - XORing the message bytes with each security code digit
in turn (1 then 2 then 3…). The actual encryption algorithm used on bill validators will
obviously be far more sophisticated and is not published here.

Taking as a start point the CRC message packets from Appendix A, we apply the
encryption algorithm to all bytes after the first two (the destination address and the no. of
data bytes).

TX : [40] [0] [70 xor 1] [1 xor 2] [63 xor 3]
RX : [1] [0] [48 xor 1] [0 xor 2] [55 xor 3]

Applying the XOR function…

TX : [40] [0] [71] [3] [60]
RX : [1] [0] [49] [2] [52]

This new message is the cctalk ‘Reset device’ command with a CRC checksum and
encryption enabled.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 43 of 47

24. Appendix C - BNV Event Codes

Bank Note Validator Event Codes

Result A Result B Event Type
1 to 255 0 Bill type 1 to 255 validated correctly and

sent to cashbox / stacker
Credit

1 to 255 1 Bill type 1 to 255 validated correctly and
held in escrow

Pending Credit

0 0 Master inhibit active Status
0 1 Bill returned from escrow Status
0 2 Invalid bill (due to validation fail) Reject
0 3 Invalid bill (due to transport problem) Reject
0 4 Inhibited bill (on serial) Status
0 5 Inhibited bill (on DIP switches) Status
0 6 Bill jammed in transport (unsafe mode) Fatal Error
0 7 Bill jammed in stacker Fatal Error
0 8 Bill pulled backwards Fraud Attempt
0 9 Bill tamper Fraud Attempt
0 10 Stacker OK Status
0 11 Stacker removed Status
0 12 Stacker inserted Status
0 13 Stacker faulty Fatal Error
0 14 Stacker full Status
0 15 Stacker jammed Fatal Error
0 16 Bill jammed in transport (safe mode) Fatal Error
0 17 Opto fraud detected Fraud Attempt
0 18 String fraud detected Fraud Attempt

There are two types of ‘Bill jammed in transport’ errors - safe mode and unsafe mode.
The safe mode assumes that the note is jammed in a position which cannot be retrieved by
the customer and so if validated as true a credit can be given. The unsafe mode assumes
that the customer can retrieve the note and so no credit should be given.

Event Types

Credit Bill accepted - credit the customer
Pending Credit Bill held in escrow - decide whether to accept it
Reject Bill rejected and returned to customer
Fraud Attempt Fraud detected. Possible machine alarm.
Fatal Error Service callout
Status Informational only

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 44 of 47

25. Appendix D - BNV Fault Codes

Bank Note Validator Fault Codes

Gaps in the table below have already been allocated to coin acceptors and are likely to be
specific to that technology.

Code Fault Optional Extra Info
0 OK (no fault detected) -
1 EEPROM checksum corrupted -
30 ROM checksum mismatch -
36 Fault on bill validation sensor Identify which sensor
37 Fault on bill transport motor -
38 Fault on stacker -
39 Bill jammed -
40 RAM test fail -
41 Fault on string sensor -
255 Unspecified fault code -

A single byte of extra information may be returned to locate the fault more precisely. This
can be ignored by the host machine if so desired.

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 45 of 47

26. Appendix E - Manufacturer ID Strings

Some products return full names in response to the ‘Request manufacturer id’ command,
others return abbreviated names. Bill validators will return abbreviated names by
convention.

26.1. Full Names

Full Name
Coin Controls Ltd
Money Controls

26.2. Abbreviated Names

Manufacturer Abbreviated Name
AstroSystems Ltd AST
Innovative Technology Ltd ITL
Japan Cash Machine JCM
Money Controls International MCI
Mars Electronics International MEI
National Rejectors Inc NRI

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 46 of 47

27. Appendix F - Common Country Codes

Each country of the world has a 2 letter designator which generally follows the
convention for car number plates away from home. Listed below are the larger countries,
split into ‘Europe’ and ‘Rest of the World’. If you require a code for a country not shown
below then please contact Money Controls for a full, up-to-date list.

27.1. Europe

Albania AL
Austria AT
Belgium BE
Bosnia BA
Bulgaria BG
Croatia HR
Cyprus CY
Czech Republic CZ
Denmark DK
Estonia EE
Euro EU
Finland FI
France FR
Germany DE
Greece GR
Hungary HU
Iceland IS
Irish Republic IE
Israel IL
Italy IT
Netherlands NL
Latvia LV
Lithuania LT
Luxembourg BE
Norway NO
Poland PL
Portugal PT
Romania RO
San Marino SM
Serbia SX
Slovakia SK
Slovenia SL
Spain ES
Sweden SE
Switzerland CH
Turkey TR
United Kingdom GB

27.2. Rest of the
World

Algeria DZ
Argentina AR
Australia AU
Bahrain BH
Bolivia BO
Brazil BR
Canada CA
Chile CL
China CN
Columbia CO
Egypt EG
India IN
Indonesia ID
Iran IR
Iraq IQ
Japan JP
Kenya KE
Korea North KP
Korea South KR
Kuwait KW
Laos LA
Latvia LV
Lebanon LB
Liberia LR
Libya LY
Malaysia MY
Mexico MX
Morocco MA
Mozambique MZ
Nepal NP
New Zealand NZ
Nicaragua NI
Nigeria NG
Pakistan PK
Paraguay PY
Peru PE

Philippines PH
Russia RU
Saudi Arabia SA
Senegal SN
Singapore SG
South Africa ZA
Sri Lanka LK
Sudan SO
Syria SY
Thailand TH
Taiwan TW
Tunisia TN
Uganda UG
Ukraine UA
United States US
Uruguay UY
Venezuela VE
Vietnam VN
Yemen YE
Zaire ZR
Zambia ZM
Zimbabwe ZW

TSP071 BNV ccTalk® Protocol Manual V2.4 June 2004

©Money Controls 2004. All rights reserved.
Page 47 of 47

28. Appendix G - Glossary

BNV Bank Note Validator. The industry standard notation for a bill validator or
bill acceptor.

CRC Cyclic Redundancy Check. A fancy checksum capable of detecting many
different types of bit errors.

MDCES Multi-Drop Command Extension Set. These are the cctalk commands for
determining and resolving address ambiguities on a multi-drop network.

	Introduction
	Protocol Settings
	General
	Address
	Electrical Interface

	Connector Pinout
	Connector Type
	cctalk Bill Features
	Bill Validator Extensions
	Compatibility with other cctalk Peripherals

	CRC Checksum
	CRC Packet Structure
	Exceptions

	Encryption
	Encryption Mechanism
	Encryption Algorithm
	Exceptions

	Protocol Layering
	General Format
	TX Messages
	RX Messages

	Security Features and Typical Operation
	Identification Strings
	Host Software - Simplified Outline
	Manufacturer-Specific Commands
	Bill Identification

	Command List Summary
	Core Commands
	Core Plus Commands
	Multi-drop Commands
	Bill Validator Commands
	Diagnostic Commands

	Notation
	Core Commands in Detail
	Header 254 - Simple poll
	Header 245 - Request equipment category id
	Header 244 - Request product code
	Header 192 - Request build code
	Header 246 - Request manufacturer id

	Core Plus Commands in Detail
	Header 242 - Request serial number
	Header 241 - Request software revision
	Header 4 - Request comms revision
	Header 2 - Request comms status variables
	Header 3 - Clear comms status variables
	Header 1 - Reset device
	Header 197 - Calculate ROM checksum
	Header 169 - Request address mode

	Multi-drop Commands in Detail
	Header 253 - Address poll
	Header 252 - Address clash
	Header 251 - Address change
	Header 250 - Address random

	Bill Validator Commands in Detail
	Header 159 - Read buffered bill events
	Header 231 - Modify inhibit status
	Header 230 - Request inhibit status
	Header 228 - Modify master inhibit status
	Header 227 - Request master inhibit status
	Header 179 - Modify bank select
	Header 178 - Request bank select
	Header 181 - Modify security setting
	Header 180 - Request security setting
	Header 158 - Modify bill id
	Header 157 - Request bill id
	Unprogrammed bills
	RAM Table

	Header 156 - Request country scaling factor
	Header 155 - Request bill position
	Header 154 - Route bill
	Header 213 - Request option flags
	Header 153 - Modify bill operating mode
	Header 152 - Request bill operating mode
	Header 226 - Request insertion counter
	Header 225 - Request accept counter
	Header 150 - Request individual accept counter
	Header 149 - Request individual error counter
	Header 247 - Request variable set
	Header 249 - Request polling priority
	Header 202 - Teach mode control
	Header 201 - Request teach status
	Header 196 - Request creation date
	Header 195 - Request last modification date
	Header 170 - Request base year
	Header 216 - Request data storage availability
	Header 215 - Read data block
	Header 214 - Write data block
	Header 145 - Request currency revision
	Header 144 - Upload bill tables
	Header 143 - Begin bill table upgrade
	Header 142 - Finish bill table upgrade
	Header 141 - Request firmware upgrade capability
	Header 140 - Upload firmware
	Header 139 - Begin firmware upgrade
	Header 138 - Finish firmware upgrade
	Header 137 - Switch encryption code
	Header 136 - Store encryption code

	Diagnostic Commands in Detail
	Header 232 - Perform self-check
	Header 237 - Read input lines
	Header 238 - Test output lines
	Header 233 - Latch output lines
	Header 151 - Test lamps
	Header 236 - Read opto states
	Header 148 - Read opto voltages
	Header 147 - Perform stacker cycle
	Header 239 - Operate motors
	Header 146 - Operate bi-directional motors

	Switching and Storing Encryption Codes
	Appendix A - CRC Checksum Algorithm
	Example Command
	Algorithm in C++
	Loop-up Table
	Verification Data

	Appendix B - Encryption Example
	Appendix C - BNV Event Codes
	Appendix D - BNV Fault Codes
	Appendix E - Manufacturer ID Strings
	Full Names
	Abbreviated Names

	Appendix F - Common Country Codes
	Europe
	Rest of the World

	Appendix G - Glossary

