
MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

This document is the copyright of Money Controls Ltd and may not be reproduced in part or in total by any
means, electronic or otherwise, without the written permission of Money Controls Ltd. Money Controls Ltd
does not accept liability for any errors or omissions contained within this document. Money Controls Ltd shall
not incur any penalties arising out of the adherence to, interpretation of, or reliance on, this standard. Money
Controls Ltd will provide full support for this product when used as described within this document. Use in
applications not covered or outside the scope of this document may not be supported. Money Controls Ltd.
reserves the right to amend, improve or change the product referred to within this document or the document
itself at any time.

©Money Controls 2004. All rights reserved.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 2 of 30

Table of Contents
Table of Contents ... 2
Revision History.. 3
Purpose of Document... 4
Intended Audience...4
Installation... 5
Getting Started.. 6

OpenMHE ... 6
EnableInterface... 7
DisableInterface .. 7
CurrentValue ... 8
PayOut .. 9
PayStatus...9
IndicatorOn / IndicatorOff...10
SwitchOpens / SwitchCloses .. 11
Getting Started Code Examples ... 12

Currency Accept ...12
Currency Payout...13
Indicator Example...14
Switch Example..14

Full Game System .. 15
CurrentPaid ... 15
SystemStatus .. 15
AvailableValue .. 16
ValueNeeded .. 16
ReadAcceptorDetails .. 17
WriteAcceptorDetails .. 17
ReadDispenserDetails .. 18
WriteDispenserDetails .. 18

‘C’ Program Structures and Constants ... 19
System .. 19
AcceptorBlock ... 19

Constants for AcceptorBlock ..19
Structures for AcceptorBlocks ..19

DispenserBlock ... 20
Constants for DispenserBlock ..20
Structures for DispenserBlock..20

Device Identity Constants ... 21
Example..21

Coin (Note) Routing. ... 23
Engineering Support ... 28

WriteInterfaceBlock... 28
ReadInterfaceBlock... 29

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 3 of 30

Revision History
Version Date Author Description
0.0 - Draft 5th Feb 03 D. Bush

A. Graham
Initial description document.

0.1 - Draft 16th Feb 03 D. Bush Detail corrections (Bug Fixes)
0.2 - Draft 28th Feb 03 D. Bush Changes to Coin Path handling
0.3 - Draft 10th Apr 03 D. Bush Minor change to SystemStatus
0.4 - Draft 30th Apr 03 D Bush Further Changes to Coin Path Handling
1.0 14th Oct 03 D Bush Addition of Meters

Various clarifications
1.1 24th Nov 03 D Bush New Meter Functions

Changes to details on dispensers
1.2 30th Jun 04 D Bush Changed footer

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 4 of 30

Purpose of Document
This document describes the software interface to the AES Intelligent Money Handling Equipment
Interface (IMHEI) as seen by a software engineer writing in either the C or C++ programming
languages on the PC.

Intended Audience
The intended audience of this document is the software engineers who will be writing software on
the PC that will communicate with the IMHEI card itself or will read the monetary information or
diagnostic information provided by the card.

The functions provided are split into three sections, intended to reflect different levels of
complexity at which the game programmer may wish to use the interface.

1. Getting Started

These are the minimum set of “vanilla” functions that may be used to get a working
demonstration program running.

Using these calls alone; the software engineer can write a working program and get a feel
for the ease with which he can now communicate with the Money Handling Equipment
attached to his game.

Apart from the money handling equipment, the card also supports a number of Indicators
and Switches. Simple calls are provided to allow the software engineer to drive indicators
and to interrogate switches.

The switches are fully de-bounced and allow the games programmer to easily determine
either the current state of a switch or to determine how many times the game player has
operated the switch.

2. Full Game System

These build on the set of functions provided within the “Getting Started” section.

They add functionality that can determine the status of the peripherals attached to the
interface card.

By these status analysis functions, the game programmer could determine (say) the exact
reason that an attempted payout failed and then notify either and engineer or a cash
collector.

3. Engineering Support

These functions provide full-blown diagnostics and reconfiguration facilities.

They allow total reconfiguration of the card and its supported peripheral set, including to
totally re-flash the microcontroller within the interface.

It is envisaged that the game software will not use the facilities described here, but
engineering tools may be written by the customer to allow aspects of the interface board
to be changed.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 5 of 30

Installation
The IMHEI card is a standard PCI interface card which has the normal Windows Plug ’n’ Play
automatic installation facilities.

When an interface card is detected in a PC the user is prompted to insert the installation CD. This
CD will configure the system to use the card and copy into the system directories the two
elements of the interface:

• The device driver: AESIMHEI.SYS
• The interface: AESIMHEI.DLL.

These provide all the software necessary to allow the user’s program to access the money
handling equipment.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 6 of 30

Getting Started
This section describes those function calls that are provided to implement a minimum system.
Using the functions described within this section, one can provide a fully working system, with
credit and payout capability, as well as a number of indicators and switches.

What is not covered in this section is any error monitoring of the money handling equipment.

OpenMHE

Synopsis
This call is made by the PC application software to open the “Money Handling Equipment”
Interface.

long OpenMHE (void);

Parameters
None

Return Value
If the Open call succeeds then the value zero is returned.

In the event of a failure one of the following standard windows error codes will be returned, either
as a direct echo of a Windows API call failure, or to indicate internally detected failures that
closely correspond to the quoted meanings.

Error
Number

System message string for English
decoding

Microsoft Mnemonic

20 The system cannot find the device specified. ERROR_BAD_UNIT

21 The device is not ready. ERROR_NOT_READY

87 The parameter is incorrect. ERROR_INVALID_PARAMETER

170 The requested resource is in use. ERROR_BUSY

1167 The device is not connected. ERROR_DEVICE_NOT_CONNECTED

1200 The specified device name is invalid. ERROR_BAD_DEVICE

1247 An attempt was made to perform an
initialisation operation when initialisation has
already been completed.

ERROR_ALREADY_INITIALIZED

1056 An instance of the service is already running. ERROR_SERVICE_ALREADY_RUNNING

Remarks
1. Whereas an Open service normally requires a description of the item to be opened (and

returns a reference to that Item) there is only one IMHE Interface unit in a system. Hence
any “Open” call must refer to that single item.

2. Even following this call, all the money handling equipment will be disabled and rejecting
all currency inserted until the successful execution of a call to EnableInterface.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 7 of 30

EnableInterface

Synopsis
The EnableInterface call is used to allow users to enter coins or notes into the system. This
would be called when a game is initialised and ready to accept credit.

void EnableInterface (void) ;

Parameters
None

Return Value
None

Remarks
1. This must be called following the call to OpenMHE before any coins / notes will be

registered.

DisableInterface

Synopsis
The DisableInterface call is used to prevent users from entering any more coins or notes.

void DisableInterface (void) ;

Parameters
None

Return Value
None

Remarks
1. There is no guarantee that a coin or note can not be successfully read after this call has

been made, a successful read may be in progress.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 8 of 30

CurrentValue

Synopsis
Determine the current monetary value that has been accepted

The CurrentValue call is used to determine the total value of all coins and notes read by the
money handling equipment connected to the interface.

long CurrentValue (void) ;

Parameters
None

Return Value
The current value, in the lowest denomination of the currency (i.e. cents / pence etc.) of all coins
and notes read.

Remarks
1. The value returned by this call is never reset, but increments for the life of the interface

card. Since this is a long (32 bit) integer, the card can accept £21,474,836.47 of credit
before it runs into any rollover problems. This value is expected to exceed the life of the
game.

2. It is the responsibility of the application to keep track of value that has been used up and
to monitor for new coin / note insertions by increases in the returned value.

3. Note that this value should be read following the call to OpenMHE and before the call to
EnableInterface to establish a starting point before any coins or notes are read.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 9 of 30

PayOut

Synopsis
The PayOut call is used by the PC application to instruct the interface to pay out coins (or notes).

void PayOut (long Value) ;

Parameters
Value

This is the value, in the lowest denomination of the currency (i.e. cents / pence etc.) of the coins
and notes to be paid out.

Return Value
None

Remarks
1. This function operates in value, not coins. It is the responsibility of the interface to decode

this and to choose how many coins (or notes) to pay out, and from which device to pay
them.

PayStatus

Synopsis
The PayStatus call provides the current status of the payout process.

long LastPayStatus (void) ;

Parameters
None

Return Values.

Value Meaning Mnemonic
0 The interface is in the process of paying out PAY_ONGOING

1 The payout process is up to date PAY_FINISHED

-1 The dispenser is empty PAY_EMPTY

-2 The dispenser is jammed PAY_JAMMED

-3 Dispenser non functional PAY_US

-4 Dispenser shut down due to fraud attempt PAY_FRAUD
-5 The dispenser is blocked PAY_FAILED_BLOCKED
-6 No Dispenser matches amount to be paid PAY_NO_HOPPER
-7 The dispenser is inhibited PAY_INHIBITED

Remarks
Following a call to PayOut, the programmer should poll this to check the progress of the
operation.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 10 of 30

IndicatorOn / IndicatorOff

Synopsis
The IndicatorOn / IndicatorOff calls are used by the PC application to control LED’s and indicator
lamps connected to the interface.

void IndicatorOn (long IndicatorNumber) ;
void IndicatorOff (long IndicatorNumber) ;

Parameters
IndicatorNumber

This is the number of the Lamp that is being controlled.

Return Value
None

Remarks
1. Although the interface is described in terms of lamps, any equipment at all may in fact be

controlled by these calls, depending only on what is physically connected to the interface
card.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 11 of 30

SwitchOpens / SwitchCloses

Synopsis
The calls to SwitchOpens and SwitchCloses are made by the PC application to read the state of
switches connected to the interface card.

long SwitchOpens (long SwitchNumber) ;
long SwitchCloses (long SwitchNumber) ;

Parameters
SwitchNumber

This is the number of the switch that is being controlled.

In principle the interface card can support 64 switches, though note that not all of these may
be physically present within a game cabinet.

Return Value
The number of times that the specified switch has been observed to open or to close,
respectively.

Remarks
1. The value returned by this call is only (and always) reset by the OpenMHE call.

2. The convention is that at initialisation time all switches are open.

3. A switch that starts off closed will therefore return a value of 1 to a SwitchCloses call
immediately following the OpenMHE call.

4. The expression (SwitchCloses(n) == SwitchOpens(n)) will always return 0 if the switch is
currently closed and 1 if the switch is currently open.

5. The pressing / tapping of a switch by a user will be detected by an increment in the value
returned by SwitchCloses or SwtichOpens.

6. The user only needs to monitor changes in one of the two functions (in the same way as
most windowing interfaces only need to provide functions for button up or button down
events).

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 12 of 30

Getting Started Code Examples

The following code fragments are intended to provide clear examples of how the calls to the
IMHEI are designed to be used:

Currency Accept

void AcceptCurrencyExample(int NoOfChanges)
 {
 long LastCurrencyValue ;
 long NewCurrencyValue ;

 long OpenStatus = OpenMHE() ;

 if (OpenStatus != 0)
 {
 printf("IMHEI open failed - %ld\n", OpenStatus) ;
 }
 else
 {
 // Then the open call was successful
 // Currency acceptance is currently disabled
 LastCurrencyValue = CurrentValue() ;

 printf("Initial currency accepted = %ld pence\n",
 LastCurrencyValue) ;
 EnableInterface() ;

 printf("Processing %d change events\n", NoOfChanges) ;
 while (NoOfChanges > 0)
 {
 Sleep(100) ;

 NewCurrencyValue = CurrentValue() ;
 if (NewCurrencyValue != LastCurrencyValue)
 {
 // More money has arrived (we do not care where from)
 printf("The user has just inserted %ld pence\n",
 NewCurrencyValue - LastCurrencyValue) ;
 LastCurrencyValue = NewCurrencyValue ;
 --NoOfChanges ;
 }
 }
 }
 }

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 13 of 30

Currency Payout

void PayCoins(int NoOfCoins)
 {
 long OpenStatus = OpenMHE() ;

 if (OpenStatus != 0)
 {
 printf("IMHEI open failed - %ld\n", OpenStatus) ;
 }
 else
 {
 // Then the open call was successful
 // The interface is currently disabled
 EnableInterface() ;

 PayOut(NoOfCoins * 100) ;
 while (LastPayStatus() == 0)
 {}
 if (LastPayStatus() < 0)
 {
 printf("Error %d when paying %d coins\n",
 LastPayStatus(), NoOfCoins) ;
 }
 else
 {
 printf("%d coins paid out\n", NoOfCoins) ;
 }
 }
 }

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 14 of 30

Indicator Example

void LEDs(void)
{
long OpenStatus = OpenMHE() ;
char Loop ;

if (!OpenStatus)

{
EnableInterface() ;

for (Loop = 0 ; Loop < 8 ; ++Loop)
{
IndicatorOn(Loop) ;
Sleep(1000) ;
}

for (Loop = 0 ; Loop < 8 ; ++Loop)
{
IndicatorOff(Loop) ;
Sleep(1000) ;
}

DisableInterface() ;
}

}

Switch Example

void LEDs(void)
{
long OpenStatus = OpenMHE() ;
char Loop ;

if (!OpenStatus)
{
EnableInterface() ;

for (Loop = 0 ; Loop < 8 ; ++Loop)
{
printf(“Switch %d is currently %s\n”, Loop,

SwitchCloses(Loop) == SwitchOpens(Loop) ?
“Open” : “Closed”) ;

printf(“It has closed %d times!\n”, SwitchCloses(Loop)) ;
}

DisableInterface() ;
}

}

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 15 of 30

Full Game System

CurrentPaid

Synopsis
The CurrentPaid call is available to keep track of the total money paid out because of calls to the
PayOut function.

long CurrentPaid (void) ;

Parameters
None

Return Value
The current value, in the lowest denomination of the currency (i.e. cents / pence etc.) of all coins
and notes ever paid out.

Remarks
1. This value that is returned by this function is updated in real time, as the money handling

equipment succeeds in dispensing coins.

2. The value that is returned by this call is never reset, but increments for the life of the
interface card. It is the responsibility of the application to keep track of starting values and
to monitor for new coin / note successful payments by increases in the returned value.

3. Note that this value can be read following the call to OpenMHE and before the call to
EnableInterface to establish a starting point before any coins or notes are paid out.

 SystemStatus

Synopsis
The SystemStatus call provides a single summary of the status all the money handling
equipment connected to the interface. It is a logical OR of the status of all of the individual device
statuses, together with the overall system.

long SystemStatus (void) ;

Parameters
None

Return Value
Zero if all devices are completely normal.

If anything is non normal bits from the three enumerations: SystemConstants, AcceptorConstants
and DispenserConstants will be set.

Remarks
This returns a logical OR of the status of all of the individual device statuses.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 16 of 30

AvailableValue

Synopsis
The AvailableValue call is available to keep track of how much money is available in the coin (or
note) dispensers.

long AvailableValue (void) ;

Parameters
None

Return Value
The approximate minimum value, in the lowest denomination of the currency (i.e. cents / pence
etc.) of all coins and notes that could be paid out.

Remarks
The accuracy of the value returned by this call is entirely dependent upon the accuracy of the
information returned by the money dispensers.

If no information is obtainable, this returns 10,000 if at least one dispenser is working normally,
and zero if all dispensers are failing to pay out.

ValueNeeded

Synopsis
The ValueNeeded call provides an interface to an optional credit card acceptor unit.

It is not envisaged that this would be used within many systems, but may be used, for example, in
vending applications.

void ValueNeeded (long Amount) ;

Parameters
Amount

The figure that CurrentValue is required to reach before the next event can happen.

Return Value
None

Remarks
1. This function does not necessarily have any affect on the system. If the MHE includes a

credit card acceptor, or similar, then the MHE interface unit will arrange for the next use of
that unit to bring CurrentValue up to latest figure supplied by this routine.

2. If CurrentValue is greater or equal to the last supplied figure then any such acceptors are
disabled.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 17 of 30

ReadAcceptorDetails

Synopsis
The ReadAcceptorDetails call provides a snapshot of all the information possessed by the
interface on a single unit of money handling equipment.

bool ReadAcceptorDetails (long Number,
AcceptorBlock* Snapshot) ;

Parameters
1. Number

The serial number of the coin or note acceptor about which information is required.
2. Snapshot

A pointer to a program buffer into which all the information about the specified acceptor
will be copied.

Return Value
True if the specified input device exists, False if the end of the list is reached.

Remarks
The serial numbers of the acceptors are contiguous and run from zero upwards.

WriteAcceptorDetails

Synopsis
The WriteAcceptorDetails call updates all the changeable information to the interface for a single
unit of money accepting equipment.

void WriteAcceptorDetails (long Number,
AcceptorBlock* Snapshot) ;

Parameters
1. Number

The serial number of the coin or note acceptor being configured.
2. Snapshot

A pointer to a program buffer containing the configuration data for the specified acceptor.
See below for details.

Return Value
None.

Remarks
The serial numbers of the acceptors are contiguous and run from zero upwards.
A call to ReadAcceptorDetails followed by call to WriteAcceptorDetails for the same data will
have no effect on the system.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 18 of 30

ReadDispenserDetails

Synopsis
The ReadDispenserDetails call provides a snapshot of all the information possessed by the
interface on a single unit of money dispensing equipment.

bool ReadDispenserDetails (long Number,
DispenserBlock* Snapshot) ;

Parameters
1. Number

The serial number of the coin or note dispenser about which information is required.
2. Snapshot

A pointer to a program buffer into which all the information about the specified dispenser
will be copied.

Return Value
True if the specified input device exists, False if the end of the list is reached.

Remarks
The serial numbers of the dispensers are contiguous and run from zero upwards.

WriteDispenserDetails

Synopsis
The WriteDispenserDetails call updates all the changeable information to the interface for a
single unit of money handling equipment.

void WriteDispenserDetails (long Number,
DispenserBlock* Snapshot) ;

Parameters
1. Number

The serial number of the coin or note dispenser being configured.
2. Snapshot

A pointer to a program buffer containing the configuration data for the specified dispenser.
See below for details.

Return Value
None.

Remarks
The serial numbers of the dispensers are contiguous and run from zero upwards. A call to
ReadDispenserDetails followed by call to WriteDispenserDetails for the same data will have no
effect on the system.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 19 of 30

‘C’ Program Structures and Constants
These definitions are not required for the simplest “Getting Started” level of use.
However, when implementing a full game implementation, these definitions will be used.
As with the prototypes and library files these will be provided as the SDK for the system.

System
enum SystemConstants
 {
 SYSTEM_MASK = 0xf0000000,

 INTERFACE_FAILED = 0x80000000
 } ;

AcceptorBlock

Constants for AcceptorBlock
enum AcceptorConstants
 {
 ACCEPTOR_MASK = 0x0000ffff,
 // No response to communications for this device

 ACCEPTOR_DEAD = 0x00000001,
 // No response from any device on this connection

 ACCEPTOR_ALL_DEAD = 0x00000002,

 ACCEPTOR_DISABLED = 0X00000004, // Disabled by Interface
 ACCEPTOR_INHIBIT = 0X00000008, // Specific by Application
 ACCEPTOR_FRAUD = 0X00000010, // Reported from device

 MAX_ACCEPTOR_COINS = 256 // Maximum coins or notes
 // handled by any device
 } ;

Structures for AcceptorBlocks
typedef struct
 {
 long Value ; // Value of this coin
 long Inhibit ; // Set by PC: "this coin inhibited"
 long Count ; // Total number read "ever"
 long Path ; // Set to specify this coin chosen output path
 long PathCount ; // Number "ever" sent down the chosen Path
 long PathSwitchLevel ; // PathCount level to switch coin to default path
 long DefaultPath ; // Default path for this specific coin
 } AcceptorCoin ;

typedef struct
 {
 long Unit ; // Specification of this unit
 long Status ; // AcceptorStatuses - zero if device OK
 long NoOfCoins ; // The number of different coins handled
 long InterfaceNumber ; // The bus / connection
 long UnitAddress ; // For addressable units
 long DefaultPath ;
 long RejectCount ; // Count of coins / notes rejected
 long Currency ; // Currency code reported
 // by an intelligent acceptor
 AcceptorCoin Coin[MAX_ACCEPTOR_COINS] ; // (only NoOfCoins are set up)
 } AcceptorBlock ;

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 20 of 30

DispenserBlock

Constants for DispenserBlock
enum DispenserConstants
 {
 DISPENSER_MASK = 0x0fff0000,
 MAX_DISPENSERS = 16 // Maximum handled
 } ;

Structures for DispenserBlock
typedef struct
 {
 long Unit ; // Specification of this unit
 long Status ; // Dispenser Status - see PayStatus call
 long InterfaceNumber ; // The bus / connection
 long UnitAddress ; // For addressable units
 long Value ; // The value of the coins in this dispensor
 long Count ; // Number dispensed since interface commissioned
 long Inhibit ;
 long Currency ; // The currency code reported by
 // an intelligent dispenser
 } DispenserBlock ;

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 21 of 30

Device Identity Constants

These constants are ORed together to form the coded device identity that can be extracted from
the interface.

Example

As an example, a Money Controls Serial Compact Hopper 2 will have the following device code
DP_MCL_SCH2, made up from:

• A device specifc code ORed with
• DP_COIN_PAYOUT_DEVICE ORed with
• DP_CCTALK_INTERFACE ORed with
• DP_MANU_MONEY_CONTROLS ORed with

This is a device code of 0x01020101

enum GenericDevices
 {
 DP_GENERIC_MASK = 0xff000000,

 DP_COIN_ACCEPT_DEVICE = 0x02000000,
 DP_NOTE_ACCEPT_DEVICE = 0x12000000,
 DP_CARD_ACCEPT_DEVICE = 0x22000000,

 DP_COIN_PAYOUT_DEVICE = 0x01000000,
 DP_NOTE_PAYOUT_DEVICE = 0x11000000,
 DP_CARD_PAYOUT_DEVICE = 0x21000000
 } ;

enum InterfaceNumbers
 { // These describe the interface via which this device is connected:
 DP_INTERFACE_MASK = 0x00ff0000,
 DP_INTERFACE_UNIT = 0x00000000,
 DP_ONBOARD_PARALLEL_INTERFACE = 0x00010000,
 DP_CCTALK_INTERFACE = 0x00020000,
 DP_SSP_INTERFACE = 0x00030000,
 DP_HII_INTERFACE = 0x00040000
 } ;

enum ManufacturerIdentities
 { // These describe the manufacturer of the device.
 DP_MANUFACTURER_MASK = 0x0000ff00,
 DP_MANU_UNKNOWN = 0x00000000,
 DP_MANU_MONEY_CONTROLS = 0x00000100,
 DP_MANU_INNOVATIVE_TECH = 0x00000200,
 DP_MANU_MARS_ELECTRONICS = 0x00000300
 } ;

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 22 of 30

enum ManufacturerSpecificDeviceTypes
 { // These device types are manufacturer-dependent,

 // so that each manufacturer can have up to 255 known devices.
 DP_SPECIFIC_DEVICE_MASK = 0x000000ff,

 DP_PARALLEL_COIN = 1 | DP_MANU_UNKNOWN
 | DP_ONBOARD_PARALLEL_INTERFACE
 | DP_COIN_ACCEPT_DEVICE,

 DP_PARALLEL_NOTE = 1 | DP_MANU_UNKNOWN
 | DP_ONBOARD_PARALLEL_INTERFACE
 | DP_NOTE_ACCEPT_DEVICE,

 // Money Controls Devices
 DP_MCL_SCH2 = 1 | DP_MANU_MONEY_CONTROLS
 | DP_CCTALK_INTERFACE
 | DP_COIN_PAYOUT_DEVICE,

 DP_MCL_SR3 = 2 | DP_MANU_MONEY_CONTROLS
 | DP_ONBOARD_PARALLEL_INTERFACE
 | DP_COIN_ACCEPT_DEVICE,

 DP_MCL_SR5 = 3 | DP_MANU_MONEY_CONTROLS
 | DP_CCTALK_INTERFACE
 | DP_COIN_ACCEPT_DEVICE,

 DP_MCL_SR5R = 4 | DP_MANU_MONEY_CONTROLS
 | DP_CCTALK_INTERFACE
 | DP_COIN_ACCEPT_DEVICE,

 DP_MCL_LUMINA = 5 | DP_MANU_MONEY_CONTROLS
 | DP_CCTALK_INTERFACE
 | DP_NOTE_ACCEPT_DEVICE,

 // Innovative Technology Devices
 DP_ITEK_NV7 = 1 | DP_MANU_INNOVATIVE_TECH
 | DP_SSP_INTERFACE
 | DP_NOTE_ACCEPT_DEVICE,

 // Mars Electronics Devices
 DP_MARS_CASHFLOW_126 = 1 | DP_MANU_MARS_ELECTRONICS
 | DP_HII_INTERFACE
 | DP_COIN_ACCEPT_DEVICE,

 DP_MARS_CASHFLOW_9500 = 2 | DP_MANU_MARS_ELECTRONICS
 | DP_HII_INTERFACE
 | DP_COIN_ACCEPT_DEVICE
 } ;

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 23 of 30

Coin (Note) Routing.

The technique for routing coins is not necessarily obvious. The design is based around the idea of
one or more cash boxes, with particular coins being routed to other destinations (probably
dispensers) if the dispenser is not full.

For the acceptor as a whole, the default destination (Acceptor.DefaultPath) is set up to the
main cash box; either before installation, or by the application. For each coin, in addition, a
separate default destination (Coin.DefaultPath) can be set up to indicate a separate cash box
for that coin. If this is left as / set to zero then the acceptor wide default is used.

For each coin that requires special handling, a specific destination (Coin.Path) is then set up.
(This is the route to use to send the coin to the dispenser)

Associated with each coin is an (interface maintained) count of the total number of instances of
the coin that have ever gone down that specific path (Coin.PathCount). This number is
undisturbed over changes in the value of the specific path - i.e. it is related only to the coin, not to
the path.

For each coin, a level (Coin.PathSwitchLevel) is available, at which the coin will be routed to
its default path. At interface initialisation this is zero for each coin, i.e. they will all be routed to the
default destination.

The basic algorithm for applications is to set the specific path for each “payout” coin to the route
that will take it to its dispenser and then detect, by operator input, that the dispenser is full.

At this point, the level (Coin.PathSwitchLevel) is set to the current path count
(Coin.PathCount). From then on, whenever coin(s) are paid, the application increments the
level (Coin.PathSwitchLevel) by the number of coins paid out. (This number is available in
the dispenser detail field Dispenser.Count) The interface will, consequently, send coins to the
dispenser until it is again full and then automatically switch to the cash box, with no further input
from the application.

Note that the value(s) for Coin.PathSwitchLevel has to be preserved by the application.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 24 of 30

Meters
The IMHEI card will support the concept of external meters that are accessible from the outside of
the PC system.

In keeping with the IMHEI concept, an interface is defined to an idealised meter. This will be
implemented transparently by the card using the available hardware. Initially the IMHEI will
support a Starpoint Electronic Counter, although other hardware may be supported at a later
date.

CounterIncrement

Synopsis
The CounterIncrement call is made by the PC application software to increment a specific
counter value.

void CounterIncrement(unsigned char CounterNo,
 unsigned short Increment);

Parameters
1. CounterNo

This is the number of the counter to be incremented.

2. Increment
This is the value to be added to the specified counter.

Return Value
None

Remarks
1. If the counter specified is higher than the highest supported, then the call is silently

ignored.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 25 of 30

CounterCaption

Synopsis
The CounterCaption call is used to associate a caption with the specified counter. This is related
to the CounterDisplay call described below.

void CounterCaption(unsigned char CounterNo,
char* Caption);

Parameters
1. CounterNo

This is the number of the counter to be associated with the caption.
2. Caption

This is an ASCII string that will be associated with the counter.

Return Value
None

Remarks
1. The meter hardware may have limited display capability. It is the system designer’s

responsibility to use captions that are within the meter hardware’s capabilities.
2. If the counter specified is higher than the highest supported, then the call is silently

ignored.
3. The specified caption is not stored in the meter, even if the meter offers this facility.

CounterRead

Synopsis
The CounterRead call is made by the PC application software to obtain a specific counter value
as stored by the meter interface.

long CounterRead(unsigned char CounterNo);

Parameters
1. CounterNo

This is the number of the counter to be incremented.

Return Value
The Value of the specified meter at system start-up.

Remarks
1. If the counter specified is higher than the highest supported, then the call returns -1

2. If the counter external hardware does not support counter read-out, then this will return
the total of all increments since PC start-up.

3. If error conditions prevent the meter updating, this call will show the value it should be at,
not its actual value. (The value is read only read from the meter at system start-up.)

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 26 of 30

ReadCounterCaption

Synopsis
The ReadCounterCaption call is used to determine the caption for the specified counter
char* CounterCaption(unsigned char CounterNo);

Parameters
1. CounterNo

This is the number of the counter to be incremented.

Return Value
None

Remarks
1. If the counter specified is higher than the highest supported, then the call returns an

empty string (“”).
2. All captions stored in the meter are read out at system start-up and used to initialise the

captions used by the interface.

CounterDisplay

Synopsis
The CounterDisplay call is used to control what is displayed on the meter.

void CounterDisplay (long DisplayCode) ;

Parameters
1. DisplayCode

If positive, this specifies the counter that will be continuously display by the meter
hardware.

If negative, then the display will cycle between the caption (if set) for the specified counter
for 1 second, followed by its value for 2 seconds.

Return Value
None

Remarks
1. This result of this call with a negative parameter is undefined if no counters have an

associated caption.
2. Whenever the meter displayed is changed, the caption (if set) is always displayed for one

second.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 27 of 30

MeterStatus

Synopsis
The MeterStatus call is used determine whether working meter equipment is connected.

long MeterStatus (void);

Parameters
None

Return Value
One of the following:
Value Meaning Mnemonic
0 A Meter is present and working correctly METER_OK

1 No Meter has ever been found METER_MISSING

2 The Meter is no longer functioning METER_DIED

3 The Meter is functioning, but is itself
reporting internal problems

METER_FAILED

Remarks
None

MeterSerialNo

Synopsis
The MeterSerialNo call is used determine which item meter equipment is connected.

long MeterSerialNo (void);

Parameters
None

Return Value
The 32-bit serial number retrieved from the meter equipment.

Remarks
1. Where the meter equipment is not present or does not have serial number

capabilities, zero is returned.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 28 of 30

Engineering Support
It is not envisaged that games programmers will use these particular functions.

They are included here for completeness, but can be ignored if you are just interfacing game
software to a collection of standard peripherals.

WriteInterfaceBlock

Synopsis
The WriteInterfaceBlock call sends a “raw” block to the specified interface.

There is no guarantee as to when, in relation to this, regular polling sequences will be sent, except
that while the system is disabled, the interface card will not put any traffic onto the interface.

void WriteInterfaceBlock (long Interface,
char* Block,
long Length) ;

Parameters
1. Interface

The serial number of the interface that is being accessed.

2. Block

A pointer to program buffer with a raw message for the interface. This must be a
sequence of bytes, and must have any checksums and addresses required by the
peripheral device included.

3. Length

The number of bytes in the message.

Return Value
None

Remarks
Using this function with some interfaces does not make sense, see status returns from
ReadInterfaceBlock.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 29 of 30

ReadInterfaceBlock.

Synopsis
The ReadInterfaceBlock call reads the “raw” response to a single WriteInterfaceBlock.

long ReadInterfaceBlock (long Interface,
char* Block,
long Length) ;

Parameters
1. Interface

The serial number of the interface being accessed

2. Block
A pointer to the program buffer into which any response is read.

3. Length
The space available in the program buffer.

Return Values

- 3 Non command oriented interface (the corresponding WriteInterfaceBlock was
ignored)

- 2 Command buffer overflow (the corresponding WriteInterfaceBlock was ignored)
- 1 Timeout on the interface - no response occurred (The interface will be reset if

possible)
0 The response from the WriteInterfaceBlock has not yet been received

> 0 Normal successful response - the number of bytes received and placed into the
buffer.

Remarks
1. Repeated calls to WriteInterfaceBlock without a successful response are not guaranteed

not to overflow internal buffers.

2. The program is expected to “poll” the interface for a response, indicated by a non-zero
return value.

MCL PCI Card User Manual TSP091.doc Issue 1.2 – June 2004

©Money Controls 2004. All rights reserved.
Page 30 of 30

This manual is intended only to assist the reader in the use of this product and
therefore Money Controls shall not be liable for any loss or damage whatsoever
arising form the use of any information or particulars in, or any incorrect use of
the product. Money Controls reserve the right to change product specifications
on any item without prior notice

	Table of Contents
	Revision History
	Purpose of Document
	Intended Audience
	Installation
	Getting Started
	OpenMHE
	Synopsis
	Parameters
	Return Value
	Remarks

	EnableInterface
	Synopsis
	Parameters
	Return Value
	Remarks

	DisableInterface
	Synopsis
	Parameters
	Return Value
	Remarks

	CurrentValue
	Synopsis
	Parameters
	Return Value
	Remarks

	PayOut
	Synopsis
	Parameters
	Return Value
	Remarks

	PayStatus
	Synopsis
	Parameters
	Return Values.
	Remarks

	IndicatorOn / IndicatorOff
	Synopsis
	Parameters
	Remarks

	SwitchOpens / SwitchCloses
	Synopsis
	Parameters
	Return Value
	Remarks

	Getting Started Code Examples
	Currency Accept
	Currency Payout
	Indicator Example
	Switch Example

	Full Game System
	CurrentPaid
	Synopsis
	Parameters
	Return Value
	Remarks

	SystemStatus
	Synopsis
	Parameters
	Return Value
	Remarks

	AvailableValue
	Synopsis
	Parameters
	Return Value
	Remarks

	ValueNeeded
	Synopsis
	Parameters
	Return Value
	Remarks

	ReadAcceptorDetails
	Synopsis
	Parameters
	Return Value
	Remarks

	WriteAcceptorDetails
	Synopsis
	Parameters
	Return Value
	Remarks

	ReadDispenserDetails
	Synopsis
	Parameters
	Return Value
	Remarks

	WriteDispenserDetails
	Synopsis
	Parameters
	Return Value
	Remarks

	‘C’ Program Structures and Constants
	System
	AcceptorBlock
	Constants for AcceptorBlock
	Structures for AcceptorBlocks

	DispenserBlock
	Constants for DispenserBlock
	Structures for DispenserBlock

	Device Identity Constants
	Example

	Coin (Note) Routing.

	Meters
	CounterIncrement
	Synopsis
	Parameters
	Return Value
	Remarks

	CounterCaption
	Synopsis
	Parameters
	Return Value
	Remarks

	CounterRead
	Synopsis
	Parameters
	Return Value
	Remarks

	ReadCounterCaption
	Synopsis
	Parameters
	Return Value
	Remarks

	CounterDisplay
	Synopsis
	Parameters
	Return Value
	Remarks

	MeterStatus
	Synopsis
	Parameters
	Return Value
	Remarks

	MeterSerialNo
	Synopsis
	Parameters
	Return Value
	Remarks

	Engineering Support
	WriteInterfaceBlock
	Synopsis
	Parameters
	Return Value
	Remarks

	ReadInterfaceBlock.
	Synopsis
	Parameters
	Return Values
	Remarks

